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ABSTRACT
We present an implementation of Real-Time CORBA’s dis-
tributable threads (DTs) as a first-class, end-to-end real-
time programming and scheduling abstraction in the Linux
kernel. We use Ingo Molnar’s PREEMPT RT kernel patch,
which enables nearly complete kernel pre-emption, and add
local (real-time) scheduling support to the Linux kernel,
atop which we build DT scheduling support. We imple-
ment DTs using Linux’s threading capabilities. Our imple-
mentation of a suite of independent and collaborative DT
schedulers confirm the effectiveness of our implementation.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed systems
; C.3.d [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems

Keywords
Distributed, Real-time, Linux, Distributable thread, Thread
integrity, Distributed scheduling

1. INTRODUCTION
In distributed systems, action and information timeliness

is often end-to-end – e.g., a causally dependent, multi-node,
sensor to actuator sequential flow of execution. Designers
and users of distributed systems, distributed real-time sys-
tems in particular, often need to dependably reason about
– i.e., specify, manage, and predict – end-to-end timeliness.

Maintaining end-to-end properties (e.g., timeliness, con-
nectivity) of a control or information flow requires a model
of the flow’s locus in space and time that can be reasoned
about. Such a model facilitates reasoning about the con-
tention for resources that occur along the flow’s locus and
resolving those contentions to optimize system-wide end-to-
end timeliness. The distributable thread (or DT) program-
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ming abstraction which first appeared in the Alpha OS [14]
and subsequently in Mach 3.0 [7], and OMG’s Real-Time
CORBA 1.2 standard [15] provides such a model as its first-
class programming and scheduling abstraction. A DT is a
single thread of execution with a globally unique identity
that transparently extends and retracts through local and
remote object instances (via remote method invocations).

The objects in the DT model are passive (as opposed to
active objects that encapsulate one or more local threads).
An object instance resides on a single computational node.
A distributable thread enters an object instance by invoking
one of its operations; that portion in the object instance
is a segment of the DT (typically implemented as a local
thread). If a DT invokes a sequence of methods in object
instances on the same node, that sequence of segments is
called a section. Only the “head” segment of a DT is active
(executing), all others are suspended (i.e., they have made
remote invocations to other nodes, eventually to the head).

Approaches for the real-time of scheduling of DTs can be
broadly classified into two categories: independent and col-
laborative scheduling. In the independent approach (e.g., [3]),
DTs are scheduled at nodes using DT scheduling parame-
ters (e.g., end-to-end deadline, end-to-end utility) that are
propagated along with DTs, and without interaction with
other nodes (thereby not considering node failures during
scheduling). Fault-management is separately addressed by
thread integrity protocols [8] that run concurrent to thread
execution. Thread integrity protocols employ failure detec-
tors (FDs) [1], and use them to detect failures of DT seg-
ments or sections [3]. Thus, any uni/multiprocessor real-
time scheduling algorithm can be used in this paradigm for
DT scheduling, as all their required scheduling parameters
are available locally once the DTs become locally active.

In the collaborative approach (e.g., [4, 6, 16]), nodes con-
struct system-wide thread schedules distributively, antici-
pating and detecting node failures using FDs. Different
distributed algorithmic paradigms can be used for such dis-
tributed schedule construction – e.g., CUA [16] and ACUA [6]
algorithms use consensus; QBUA [4] and DQBUA [5] use
quorums; RTG-DS [9] and RTG-L [10] use gossip. Both in-
dependent and collaborative scheduling approaches are in-
cluded in the Real-Time CORBA specification.

We describe implementing DTs as a first-class end-to-end
programming abstraction in the Linux kernel and as a first-
class kernel scheduling construct, allowing for both inde-
pendent and collaborative DT scheduling. We first modify
the Linux kernel to add local real-time scheduling support
(Section 2). We implement DTs using Linux’s threading



capabilities and export a DT API that is largely similar
to Real-Time CORBA’s (Section 3). The DT schedulers
in the literature assume uniprocessor nodes, and we follow
that assumption, but augment with an implementation op-
timization, pioneered in Alpha [14], to optimize collabora-
tive scheduling: co-scheduling – i.e., use multicore nodes,
with one core for running schedulers and related functional-
ity, and other cores for application logic (Section 4). As a
proof-of-concept, we implement a set of independent and col-
laborative schedulers and measure effectiveness (Section 5).

Our motivation for this effort is simple: Linux is one of the
most mature OSs with wide acceptance and traction across
various form factors – from enterprise-level servers to embed-
ded devices. The only publicly available DT platforms are
either middleware (e.g., [11, 19]) or OSs that are no longer
extant [7,14]. While middleware has compelling advantages
for supporting DTs, the natural home of DT schedulers is the
OS kernel because DTs are then scheduled coherently with
the other native OS abstractions and mechanisms (synchro-
nizers, etc.). Our Linux implementation – the first such –
fills this gap and constitutes our contribution.

2. LOCAL SCHEDULING

2.1 The PREEMPT_RT Patch
The stock Linux kernel provides soft real-time capabili-

ties, such as the POSIX primitives and the ability to set
priorities. The kernel provides two real-time scheduling poli-
cies – SCHED FIFO and SCHED RR and a“nice”-based
policy called SCHED NORMAL. SCHED FIFO exe-
cutes processes in FIFO order within a priority and will
only preempt a task to execute a newly arrived task at a
higher priority. This is primarily a POSIX-specified fea-
ture. SCHED RR, on the other hand, schedules processes
of the same priority in a round robin fashion while favoring
higher priority tasks. To introduce real-time semantics to
the kernel, a preemptible kernel is required. To achieve this,
we use Ingo Molnar’s fully preemptible PREEMPT RT
kernel patch [13] which enables nearly complete kernel pre-
emption. The patch improves interrupt latencies and allows
preemption of most parts of the Linux kernel except for a
few regions which are inherently unpreemptible, such as the
task scheduler. In-kernel locking primitives have been re-
implemented using wait queuing mutexes. As a result, crit-
ical sections that are protected with spinlocks or read-write
locks can sleep and are therefore preemptible. Priority in-
heritance has been implemented for in-kernel spinlocks and
semaphores. Interrupt handlers in the kernel have been con-
verted into preemptible kernel threads.

2.2 Real-time Scheduling
To cause minimal disruption to the Linux kernel’s schedul-

ing framework, we implement real-time schedulers as sub-
types of the SCHED FIFO scheduling class. We extended
the task struct struct, which is used in the kernel to rep-
resent processes and threads (note that Linux implements a
1:1 threading model) by adding a new data member rt info.
rt info contains scheduler-specific information, including a
member, rt sched, that can be used to specify which schedul-
ing algorithm is to be executed. This member is only exam-
ined if the task is in the SCHED FIFO scheduling class.
Additionally, the rt info struct contains scheduling param-
eters such as deadlines, periods, execution times, and utility.

The Linux scheduler calls the pick next task rt function
to select the next real-time task to run. We exploit this
feature by calling our schedulers from within this function
and setting the return value of pick next task rt to the
return value of our scheduling algorithm. We thus keep the
Linux dispatching and scheduling code unchanged and only
modify the portion that selects the next task to be executed.

Our scheduling API starts a real-time task as a high prior-
ity SCHED FIFO task. It then calls setrtinfo, a custom
system call we added to the kernel. This call fills the rt info
struct with the appropriate scheduling parameters, reduces
the task priority, and sets the TIF NEED RES-CHED
flag of the current task, causing schedule to be called on
return from the system call. Note that the task always starts
at a higher priority than the rest of the real-time tasks man-
aged by our scheduling algorithm. This allows it to imme-
diately gain access to the processor and invoke the system
call that sends its scheduling parameters to the kernel.

Instead of calling schedule manually from within setrt-
info, we set the TIF NEED RES-CHED as mentioned
above. This flag is checked after a return from a system call.
When the kernel finds this flag set in the current process, it
reschedules the task, by calling schedule, and places it in
the same queue as the other real-time tasks managed by our
schedulers in the multi-level priority queue used by Linux to
represent the processor ready queue. (The SCHED FIFO
algorithm simply selects the head of the ready queue with
the highest priority.) The call to schedule puts the kernel’s
scheduling process into motion. This eventually calls the
pick next task rt function, which calls our custom sched-
ulers to select the next task to execute – this ensures that
schedule is not called in an unsafe state by allowing the ker-
nel to automatically call it when returning from the system
call with the TIF NEED RES-CHED flag set.

3. THE DISTRIBUTABLE THREAD API
We base our DT implementation on the Native POSIX

Thread Library (NPTL) in Linux, which provides near com-
plete POSIX compliance, and is fully integrated into the
GNU C library, glibc, using features provided by the 2.6 ker-
nel. The NPTL provides a 1:1 implementation of threads in
Linux – i.e., each thread is a kernel-schedulable entity. Thus,
each thread is represented by a task struct in the kernel
and is scheduled using the kernel’s scheduling mechanism.

Our DT implementation has two parts: 1) a middleware
that allows application programmers to make use of the DT
semantics in user-space, and 2) a set of kernel operations
that keeps track of the DT as it transits across nodes.

The middleware consists of three different components:
• Name server: The component maintains a list of the

services hosted by each node. When the middleware
starts, it exchanges information with its peers to ob-
tain the global services-to-node mapping. The name
server is consulted when a program wishes to make a
remote invocation in order to determine the IP address
of the remote node.

• Portable interceptor (PI): The PI listens for re-
mote invocations and spawns new threads to accom-
modate the incoming service requests. The PI also
sends information about the spawned sections to the
kernel so that it has complete knowledge of the identity
of the DTs it hosts and their sections.

• Service library: This library implements the func-



tionality of the services hosted locally. The library
functions are linked to by the PI (when a service re-
quest arrives) using Linux’s dynamic linking functions.

When a remote invocation is made, the PI spawns a new
thread to contain the new DT section. Information about
this section is sent to the kernel via a set of system calls
so that the kernel can maintain a global view of the DTs it
hosts. In particular, the kernel uses a system-wide ID, which
we refer to as the gtid, to identify the DT for scheduling
purposes. Scheduling parameters are propagated to the PI
during remote invocation and are enforced locally by the
DT API. Each section returns its exit status to the main
application so that it can determine whether or not it has
successfully completed.

One important feature of the DT API is that each section
is represented by a POSIX thread on the local node hosting
it. The DT API spawns a new thread and sets its schedul-
ing parameters using the setrtinfo system call as previously
described. DTs that make the system unschedulable or can-
not accrue timeliness utility are removed from the system
by most DT scheduling algorithms [4, 6]. We accomplish
this by sending the SIGUSR1 signal to the affected DTs.
The thread then runs any appropriate exception handlers it
has registered in order to bring the system to a safe state
and returns a status code to indicate that it was abnormally
terminated. Whenever a section starts on a node, its PID
(retrieved by Linux gettid) is sent to the kernel and stored
in the DT table (see the next section). This PID is then
used to communicate with the section by sending it the ap-
propriate signals.

In order to simplify the implementation, we consider each
job of a real-time task as a separate thread. This nicely
fits the aperiodic task model and can be used to mimic the
periodic model by releasing a new thread representing the
next invocation of the task using appropriate timers. We
use high precision POSIX timers (based on HPET or TSC)
to start invocations of the periodic tasks.

3.1 The API
We added a set of system calls to store and retrieve in-

formation about DTs in the kernel. At the kernel-level, a
table, implemented using kernel linked lists, is used to store
information about the DTs it hosts. The table is protected
using a traditional spinlock (i.e., raw spinlock t).

In the API, a new type, dt handle t, is defined to identify
the DTs. This data type is defined as follows:

typedef unsigned long long dt_gtid_t;

typedef struct dt_handle dt_handle_t;

struct dt_handle {

dt_gtid_t gtid;

long secid;

pthread_t ltid;

};

The gtid member of the struct is used to store a 64-bit
unique ID representing the DT, the secid is used to keep
track of the section currently being executed, and the ltid
member is the traditional pthread t type of the POSIX
thread representing the first section in the DT. It is used
to wait for the DT using the standard pthread join NPTL
function (discussed in detail later).

There are three main functions that a program using DTs
needs to call. All of these functions take a dt handle t as

at least one of their parameters. The functions include:

int dt_spawn(dt_handle_t *handle, void (*function)

(dt_handle_t *, void *), void * args);

int dt_remote_invoke(dt_handle_t *, const char *name,

void * args, struct rt_info *rt_param);

int dt_join(dt_handle_t *handle);

We now describe each of these functions.

3.2 API: dt spawn

This function is used to spawn a new DT. Once the func-
tion returns, a new DT has been created and the pthread t
handle of the POSIX thread that represents the first section
in the DT is placed inside the ltid member of the DT’s han-
dle. Subsequently, ltid can be used to wait for the entire
DT to complete execution using the standard pthread join
function as we discuss below.

In our implementation of real-time DTs, we use the first
section of the DT as a placeholder for the DT – it does not
perform any real-time computing but, instead, is responsible
for calling the real-time sections of the DT. The actual real-
time sections are started from within this first section using
the dt remote invoke function. We also use this function
to start local as well as remote sections of the DT.

Note that dt spawn is used to create the first “dummy”
section that then spawns the functional sections of the DT
by calling dt remote invoke. Also, the dt remote invoke
calls are used to start sections regardless of the identity of
nodes they are hosted on. The name server ensures that
the invocation is sent to the appropriate node, regardless of
whether this node is remote or local.

When the dt spawn function is called, it first invokes
a system call that generates a unique 64-bit ID for the new
DT being created – this involves creating a new entry for the
DT in the kernel DT table. It then starts another thread
to actually represent the first section of the DT. This new
thread invokes a system call to store the information of the
section it represents in the DT’s kernel DT table entry.

Since each POSIX thread on Linux is represented by a
kernel thread, we use the Linux gettid() call to retrieve
the PID of the kernel entity representing the current thread.
This information is stored in the kernel DT table and is used
to communicate with the section, by sending it appropriate
signals, when necessary.

After successfully storing this information in the kernel,
the function passed in to dt spawn, in its parameter list, is
called. This function contains the code of the first section of
the DT and can contain any application-specific operation.

When this function call returns, a system call is invoked
to remove the information of the current section from the
kernel DT table, and the DT entry is cleaned up since the
termination of this first “dummy” section of the DT implies
that the entire DT has finished execution.

3.3 API: dt remote invoke

When dt remote invoke is called, it first sends a query
to the name server to check if the target service exists on the
(target) remote node. Note that, as stated earlier, we use
this function to call services that are hosted on either the
local host or a remote node. (The name dt remote invoke
may be a bit of a misnomer in this case.)

If the requested service does not exist, an error code is
returned. Otherwise, the name server returns the IP address



of the node that hosts the service. If the service does exist,
a system call is invoked to check whether or not an entry
for the current DT exists in the kernel. If this is the first
remote invocation to a remote node, there will be no entry
in the kernel to store information about the DT. It is at this
point that the entry is created on such nodes.

This is followed by dt remote invoke making an invoca-
tion to a system call that sets the status of the current DT to
“remote”. This information can be used by other algorithms,
e.g., thread integrity protocols, to determine a DT’s status
and health. A call is made to a library function that creates
a UDP connection to the node hosting the service. Finally,
dt remote invoke sends the remote node the name of the
required service and the scheduling parameters to be used
to schedule the section that will be spawned to execute the
service. Once this information is sent, the thread blocks on
a receive from the remote (possibly localhost) node.

When the remote node receives the UDP message, it spawns
a new thread to handle it. The spawned thread first checks
with the name server to see if the service name exists locally.
If it does, a system call is invoked to store information about
the DT making the invocation. The scheduling information
sent is then extracted from the UDP message received, and
a new thread is invoked and sent this scheduling informa-
tion. The newly invoked thread is responsible for executing
the remote section. (We will discuss the reason a separate
thread is invoked to execute the local section instead of using
the thread that was spawned to handle the UDP message.)

The newly created thread first installs a signal handler
for the SIGUSR1 signal. The thread then raises its pri-
ority by calling sched setscheduler with SCHED FIFO
as the scheduling class to be used. This is followed by a
call to sched set-affinity to change the CPU affinity of
the thread to the other processor. (We set the CPU affinity
of the init process at boot time to force all functionality to
move to one processor.) We call this processor the schedul-
ing co-processor. The scheduling co-processor is responsible
for running all the DT API code and the kernel modules
implementing the collaborative scheduling algorithms.

The real-time sections themselves are executed on the
other processor. The call to sched set-affinity implements
this by moving the thread that will be hosting the real-time
sections to the other processor. Once this is done, a call to
setrtinfo is made and the scheduling parameters received
in the UDP message are passed to this function to set the
real-time scheduling parameters of the thread.

Immediately following this, a system call is made to add
information about the section to the kernel (this system call
also sends information to the collaborative scheduling mod-
ules if they are active – this is further elaborated in Sec-
tion 4). This is followed by the actual real-time code.

Recall that the kernel module implementing the DT sched-
ulers sends the SIGUSR1 signal to the thread that is to be
terminated. The signal handler that is installed when the
thread begins is programmed to return a status code indi-
cating that the thread has been terminated. Appropriate
cleanup handling code is placed in this handler.

When this thread exits, either by successfully finishing ex-
ecution or receiving the SIGUSR1 signal from the sched-
uler, it returns to the thread that spawned it – namely, the
thread that received the UDP message from the invoking
node. This thread then checks the return code of the re-
turning thread to see whether it has successfully finished or

if it has been terminated by the scheduler. In case of the
former, an “OK” message is sent to the invoking node, which
is blocked on a receive waiting for a reply from the remote
node. In case of the latter, a “TR” message is sent.

The main reason that we spawn a new thread and then
install a signal handler on it (instead of installing a signal
handler on the thread that receives and sends UDP messages
from/to the invoker) is that we want to send a message to
the invoker and do not want the thread to be terminated
until it communicates with the invoker about its status. It
would be possible to carefully construct a mechanism for
determining whether a message has been sent to the invoker
or not and then sending it from the signal handler using
asynchronous-safe system calls, but it presents too large a
potential for introducing bugs. Therefore, we spawn a new
thread and have it execute the section.

Note that POSIX specifies that a signal sent to a process
can be handled by any threads that have been spawned by
that process. One of the major POSIX incompatibility is-
sues that was addressed in NPTL was providing this signal
handling semantics. However, we wish to send signals to
specific threads within the application – the ones hosting
the sections of the DTs. We do this by taking advantage of
Linux’s 1:1 implementation of POSIX threads.

We use the send sig info system call, with the task struct
of the thread executing the section as its parameter, to en-
sure that the signal is delivered to this thread. The actual
task struct is retrieved by calling find task by pid with
the result of gettid on the thread being targeted. Note that
we may call send sig info from within the scheduler.

send sig info makes a number of invocations to a set
of functions that acquires locks protecting scheduling data
structures. Since we may call send sig info from within
the scheduler, this results in a classic deadlock lock ac-
quiring pattern with the function trying to acquire a lock
that is already held by its invoker. In order to circum-
vent this problem, we add a field, about to abort, to the
task struct representing tasks in the kernel. Before calling
send sig info to abort the task, we set this field to one. We
then modify the code path taken by send sig info to avoid
acquiring these locks if about to abort is set. This allows
us to avoid the deadlock scenario by not attempting to ac-
quire locks that were already held when send sig info was
called by the scheduler. Mutual exclusion is not sacrificed in
this case because the data structures are already protected
by the locks acquired from earlier on in the scheduler.

The dt join function. This function provides functional-
ity equivalent to pthread join on a DT. It calls pthread join
on the pthread t ID of the first section in the DT.

4. THE CO-SCHEDULING APPROACH
We now describe how we use a scheduling co-processor to

run the scheduler and the DT API. We divide the scheduler
into two logical parts. The first part is responsible for re-
sponding to distributed scheduling events (e.g., the arrival of
new DTs, the removal of a DT, and node failures), and the
second part is responsible for performing local scheduling
and dispatching of the sections on the node.

We first focus on the first part. Whenever a new thread
arrives, this part of the scheduler is responsible for inform-
ing other nodes about the thread arrival, sending them the
scheduling parameters of the new thread, and requesting
the start of collaborative scheduling. Note that collabora-



tive scheduling involves scheduling DTs and local threads on
the nodes that have DTs on them, by sharing information
among the affected nodes about all those threads; because
of overloads or resource contention, urgency and importance
may result in the scheduling algorithm being used terminat-
ing some threads (both DTs and local). Based on the result
of collaboration between the nodes, a set of threads, possi-
bly empty, is selected for removal, based on a system-wide
(often application-specific) scheduling optimality policy.

This set of threads is sent the SIGUSR1 signal so that
they can execute their appropriate exception handlers. This
part does not perform any actual thread dispatching. We
implement that functionality in a kernel thread on the schedul-
ing co-processor using CPU affinity to bind the thread to
the appropriate processor. This module (actually a thread)
is now referred to as yet another schedulable entity. The
module is notified of the events it should handle by waiting
on a wait queue. The events are placed on this wait queue
by the system calls issued by the DT API. The details of
this module are specific to the scheduling algorithm in use.

The second part of the scheduler is responsible for select-
ing one of the threads that remain after the kernel module
has eliminated threads according to the scheduling policy. In
all our current target DT scheduling algorithms [4–6,16], the
second part of the scheduler implements EDF (with priority
inheritance in the case of DQBUA). This is implemented, as
discussed before, by hooking into pick next task rt, sort-
ing the ready queue at the appropriate priority in increasing
order of deadlines, and dispatching the top of the queue.

Figure 1: Co-Scheduling approach

Figure 1 depicts our co-scheduling architecture. We only
show two nodes for ease of exposition. When a new real-time
task (DT) arrives at either of the two nodes, it sends infor-
mation about itself to the collaborative scheduling kernel
module, and then transitions to the other processor in the
node by calling sched setaffinity. These steps are labeled
“1” in Figure 1 to indicate that they are the first steps.

Once the call to sched setaffinity succeeds and the task
moves to processor one, the collaborative scheduling kernel
module starts collaboration with the other nodes (step 2).
Once collaboration is over, the result of the collaboration is
a set of threads that should be removed from the system.
This is accomplished when the collaborative scheduling ker-
nel module sends the SIGUSR1 signal to the threads that
need to be terminated (step 3). The threads remaining after
this are scheduled using EDF on processor one.

4.1 Collaborative Scheduler Commonalities
The heart of the co-scheduling approach is a high priority

kernel module that waits for distributed scheduling events.

A wait queue is defined in the kernel to enable communi-
cation between the DT API and the kernel module. When
the DT API makes system calls involving events of interest
to the co-scheduler, a corresponding event is placed on this
wait queue for processing by the kernel module. The wait
queue is defined as follows:

wait_queue_head_t my_wait_queue;

In addition to the system calls in the DT API, we add ad-
ditional system calls to handle events not present in the API.
For example, some collaborative algorithms require knowl-
edge about all sections of an arriving DT. To allow this, we
add a system call that the application can use to register
the list of sections of a DT with the kernel module, before
starting the DT. This list is placed on my wait queue for
processing by the kernel module. We also define another
system call that can be used at the end of DT invocations
to release memory allocated for the DT in the kernel.

These calls allow us to store information about the created
DT locally, and also update other nodes so that they can
take part in collaborative scheduling. This is accomplished
by placing a newly arrived DT’s section list into a UDP
packet and sending it to the remote nodes, which have a high
priority kernel module listening for such messages. Once
this module receives such a message, it makes a system call
with the section list so that the information about the newly
arrived DT is included in the kernel at its end.

This also serves another purpose. Recall that a new DT’s
arrival is a distributed scheduling event. Thus, the arrival
of a message to the kernel module listening for DT creation
messages is a trigger for collaborative scheduling. As soon as
the information about the newly arrived DT is included in
the kernel data structures, the co-scheduling kernel module
begins executing the collaborative scheduling algorithm.

As previously mentioned, when a section arrives into the
system, a new POSIX thread is spawned to accommodate it.
The PID of this thread is sent to the co-scheduling kernel
module via my wait queue. The main purpose for this
operation is the ability to subsequently communicate with
the section by sending signals to its PID.

A common feature of most collaborative scheduling algo-
rithms [4,6,16] is the ability to create an EDF schedule and
check its feasibility. We provide this functionality in a set
of functions that can be called by the kernel module (e.g.,
create schedule and isFeasible).

When collaborative scheduling is triggered, each node sorts
its list of sections according to its algorithm-specific crite-
ria. It then inserts these sections into the ready queue. This
is followed by a call to create schedule, which effectively
sorts the threads into EDF order, considering the possibly
different arrival times. Once this is done, a call to isFeasi-
ble is made. If the schedule is feasible, the next thread is
added to the schedule and the process is repeated. Other-
wise, the thread is added to the list of threads to reject.

Depending on the scheduling algorithm in use, the threads
to reject are either used as inputs to a round of consensus
so that all nodes agree on the set of threads to reject (as in
CUA [16] or ACUA [6]), or are unicast to nodes that host
the sections so that they can be removed (as in QBUA [4]).

5. EXPERIMENTAL EVALUATION

5.1 Co-Scheduling



We first evaluate co-scheduling’s effectiveness. We im-
plemented Clark’s DASA scheduler [2] in the co-scheduling
approach. We selected DASA, as it is an excellent example
of a uniprocessor scheduling algorithm that allows thread
dependencies, and allows thread urgency to be orthogonal
to thread importance, which is specified using time/utility
functions [12]. Also, DASA defaults to EDF during un-
derloads and no dependencies, and performs extremely well
during overloads. Specifically, the kernel module on the co-
scheduling processor selects a set of threads that need to
be eliminated according to DASA and sends them the SI-
GUSR1 signal. The threads that are not terminated are
scheduled using EDF.

Table 1: Task set parameters

We performed this experiment for two task sets (Table 1)
with periods equal to deadlines, and measured the average
deadline satisfaction ratio (DSR) for fifty runs each and the
95% confidence interval. Task execution times were varied to
produce utilizations between 10 and 200. Our platform is an
Intel E5300 dual-core CPU, 2.60GHz/1GB, running kernel
2.6.24.7/rt27 PREEMPT patch plus our custom extensions.

(a) DSR vs. Utilization: Task set I

(b) DSR vs. Utilization: Task set II

Figure 2: Effectiveness of co-scheduling: DASA’s
performance without DT API; with DT API; and
with DT API and co-scheduling

We performed three different experiments: 1) DASA with-
out using the DT API; 2) DASA using the DT API, which
incurs the overhead of the DT API; and 3) DASA using
the co-scheduling kernel module approach, which incurs the
overhead of the DT API and the co-scheduler approach. Fig-
ures 2(a) and 2(b) show the results.

We observe that the third approach (“DASA DT 3”) closely
follows the other two, illustrating co-scheduling’s effective-
ness. Note that there are slight differences between DASA
DT 3 and the other two approaches just after 100% uti-
lization and at the high end of utilizations close to 200%.
This occurs due to three reasons: First, DASA DT 3’s fea-
sibility analysis ignores overheads inherent in the schedul-
ing mechanism. Second, since DASA DT 3 does not stop
the entire system when making its decision, it is possible
for some tasks that have been selected for elimination by
the co-scheduler to actually complete execution before they
are signaled for termination. Finally, the co-scheduling ap-
proach incurs lower overhead than the bare-bones scheduler
in certain cases since it does not stop tasks for the duration
of DASA (which is more expensive than EDF).

The third point is responsible for the DSR gains in Fig-
ure 2(a) and in some of the data points in Figure 2(b). As
can be seen, DASA DT3 outperforms the other two ap-
proaches for most data points. This is because DASA is
run concurrently with other threads in the system on the
co-processor and only affects the system when it sends a
termination signal to the relevant threads. Otherwise, the
system is only stopped for the duration of EDF, which se-
lects a task to run from those that have not been signaled
for termination.

Note, however, that at the 200% data point in Figure 2(b),
the co-scheduler approach performs worse than the two oth-
ers. This is due to the first two reasons mentioned earlier.

5.2 Independent Scheduling
We now evaluate independent scheduling algorithms for

DT scheduling. Recall that any uniprocessor scheduling al-
gorithm can be used in this paradigm for DT scheduling.
We thus consider independent scheduling with RMS (same
as the approach used in [18]), EDF, DASA, and LBESA [12].

Table 2: DT set parameters

Our testbed includes two machines (Intel E5300 dual-core
CPU, 2.60GHz, 1GB; Intel T3400 dual-core CPU, 2.16GHz,
2GB), connected via 100Mb/s Ethernet, and both running
kernel 2.6.24.7/rt27 PREEMPT patch plus our extensions.

We consider five DTs, with each thread consisting of two
real-time sections. Table 2 shows the DT set (deadlines
equal periods). Figures 3(a)–3(d) show the DSR and ac-
crued utility ratio (AUR), which is the ratio of the total
accrued utility to the total number of DT releases. The val-
ues are plotted against the transactional load, which is the
ratio of the sum of the execution times of all sections in the
DT to its end-to-end period (aggregated for all DTs). As
Figures 3(c) and 3(d) indicate, independent scheduling with
DASA consistently outperforms others, with LBESA [12] a



close second.
Independent scheduling with EDF is optimal during un-

derloads, while that with RMS is not. This is evident in
Figure 3(c), where RMS begins to miss deadlines at 140%
load, while EDF only begins to miss deadlines after 180%
load. However, after 180% load, EDF’s DSR quickly de-
grades (DSR is just above 0.1 at 240% load). In contrast,
RMS’s DSR is competitive with DASA and LBESA.

Figure 3(d) shows that, despite RMS’s competitive DSR
with DASA and LBESA (and sometimes better DSR), DASA
and LBESA consistently yield higher AUR. This is because
DASA and LBESA (heuristically) select the “right” set of
tasks to increase the accrued utility.

5.3 Collaborative Scheduling
We now evaluate collaborative scheduling algorithms in-

cluding CUA [16], ACUA [6], and QBUA [4]. As a base-
line, we also include independent scheduling with HUA [17],
which extends DASA with failure-handler scheduling (HUA
defaults to DASA when handler overheads are negligible).

We considered the DT set in Table 2, and measured the
average and 95% confidence interval of the DSR and AUR
for 100 runs of each setting for each experiment and plotted
them against the transactional load. Failure handlers were
configured to consume 10% of processing time. Figures 4(a)–
4(d) show the results. The difference between HUA and
QBUA increases from 13% to 18%, that between CUA and
QBUA expands from 8% to 13%, and that between ACUA
and QBUA increases from 2% to 3%. Note that ACUA
tracks QBUA quite closely – i.e., it is minimally affected by
the increased opportunity to show-case its ability to better
increase AUR against QBUA due to the increased deadline
misses introduced by the failure handlers. This is due to the
fact that the main difference between QBUA and ACUA is
their overhead terms, not their AUR properties. (QBUA re-
duces the overhead of the consensus-based ACUA algorithm
by a quorum-based approach, which reduces the communica-
tion patterns from broadcasts to multicasts and is invariant
with respect to the number of failures.)

6. CONCLUSIONS
Our results confirm that DTs can indeed be supported

as a first-class, end-to-end programming and scheduling ab-
straction in the Linux kernel with acceptable overhead. Co-
scheduling is effective. Independent and collaborative schedul-
ing show their respective merits: uniprocessor scheduling al-
gorithms’ (uniprocessor) behaviors carry over to distributed
systems in the independent DT scheduling approach; collab-
orative scheduling algorithm design behaviors are preserved
in the implementation.

Our Linux implementation is open-sourced under GPL,
and is publicly available at chronoslinux.org.
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