
Quantitative Evaluation of Single and Multicore
Real-Time DVFS Schedulers in Linux

[TechnicalReport]

Antonio Barbalace
ECE Virginia Tech

Blacksburg, VA, USA
antoniob@vt.edu

Binoy Ravindran
ECE Virginia Tech

Blacksburg, VA, USA
binoy@vt.edu

ABSTRACT
We report on our experience in implementing and evaluating
nine, state-of-the-art single and multicore real-time dynamic
voltage and frequency scaling (DVFS) schedulers on an em-
bedded Linux platform. The algorithms include CC-EDF,
LA-EDF, DRA, AGR, CVFS, and DR, among others, and
the platform is a dual-core ARM Cortex-A9 MPCore pro-
cessor/PandaBoard, running a real-time Linux kernel. Our
evaluations reveal the effectiveness of the algorithms’ power
savings. However, due to non-negligible scheduling and volt-
age/frequency transition overheads, non ideal time account-
ing, and our integrated Linux scheduling environment, their
timeliness behaviors deviate from the theoretical. We pro-
pose solutions and identify reduced, schedulable total task
utilization bounds.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—measurements,
operational analysis; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms
Design, Measurement, Performance

Keywords
DVFS, real-time, scheduling, Linux, ARM, single-core, mul-
ticore, single clock domain

1. INTRODUCTION
On a modern processor, there are mainly two methods

to reduce power consumption: dynamic power management
(DPM) and dynamic voltage and frequency scaling (DVFS).
DPM is a feature that allows to turn off specific parts of the
processor, while other critical components (e.g., clock gener-
ator, timer) keep running. Turning off parts of the processor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM 0-12345-67-8/90/01 ...$10.00.

is accomplished gradually (following a state machine), and
involve transitioning the processor to progressively deeper
idle or sleep states. An entire core, the ALU, and differ-
ent cache levels can be clocked out or turned off in differ-
ent sleep/idle states. Deeper the sleep/idle state, greater
is the latency incurred to transition the processor into that
sleep/idle state, and the resulting power savings [25].

DVFS involves changing the speed of the processor by
varying the clock frequency along with the supplied volt-
age. The processor frequency can be changed by modify-
ing a set of clock multipliers, such change incurs a transi-
tion latency due to the waiting time for the phased locked
loop (PLL) oscillator to lock on the new frequency. This
transition latency depends on the from and to frequencies.
The processor voltage can be changed by requesting a volt-
age transition to the (usually external) supply regulator. A
communication between the processor and the supply reg-
ulator bounds the latency incurred in the transition. The
frequency and voltage must be changed in a coordinated
manner, because for each supply voltage, there is a maxi-
mum permitted frequency. During a voltage and frequency
transition, the core/processor can continue executing.

Both DPM and DVFS have been extensively used in the
real-time literature to obtain power savings, along with tech-
niques that exploit static and dynamic slack of tasks. The
static slack is the idle time interval due to low CPU demand
of the application. For a periodic real-time application, the
total CPU demand is the ratio of the task period to the
worst-case task execution time (WCET), aggregated for all
tasks. When the total CPU demand is less than 100%, then
there exists time intervals during which the CPU idles, which
is called the static slack. The dynamic slack is the slack time
that is available when the actual execution time of a task
(AET) is smaller than its (predicted) WCET. Dynamic slack
time can only be obtained when the task completes—i.e., at
run-time, in contrast to the static slack, which is known off-
line, as task periods and WCETs are presumed to be known
off-line for hard real-time applications. While DPM is used
to put the processor in the sleep/idle state during idle times,
DVFS is used to “stretch” the execution time of each task
to reduce the idle time as much as possible [10, 9]. Both
techniques are used in single and multicore systems. Note
that stretching the real-time task set to completely reduce
the idle time due to static and dynamic slack will not let
other tasks (e.g., soft or non real-time) to complete.

Despite the extensive study of DPM and DVFS techniques
in the real-time literature, vast majority of them have been

evaluated using simulations [20, 1, 7, 12, 23]. Very few
techniques have been implemented in an OS and evaluated
through actual timeliness and power measurements. (See
Section 2.)

Simulation-based studies have limitations. For example,
most simulation results presented in the literature consider
continuous voltage and frequency scaling ranges as well as
instantaneous voltage and frequency transition time in the
processor [20, 1, 7, 12, 23]. Additionally, all assume continu-
ous time and precise timekeeping at the OS-level. Moreover,
in the multicore domain, no core-wide synchronization is-
sues have been considered in both the partitioned and global
scheduling disciplines [8].

Contributions. We implement a suite of single-core and
multicore real-time DVFS algorithms supporting a single
voltage and frequency domain in a real-time Linux kernel,
and experimentally evaluate their timeliness and power con-
sumption on an embedded platform. Instead of considering
the interplay of DPM and DVFS to obtain the maximum
power savings, we focus only on DVFS algorithms. This
choice was due to two important factors (often not con-
sidered in the literature): how to handle DVFS schedul-
ing techniques in an integrated OS scheduling environment
(Sections 3.1 and 3.3), and how to guarantee that the same
code can run unmodified and efficiently on different plat-
forms (portability). In general, without an accurate power
model of the processor (which is platform specific), it is al-
most impossible to make the best power transition decision.
The power model can be inferred by extensive measurements
or from the processor specifications.

The real-time DVFS scheduling algorithms that we im-
plemented belong to the earliest-deadline-first (EDF) family
of algorithms, and include CC-EDF, LA-EDF, DRA, AGR,
CVFS, and DR, among others. The algorithms are either
single-core or multicore partitioned schedulers. (Since global
real-time DVFS scheduling has been sparsely studied, we
ignore that class.) All algorithms belong to the class of
inter-task schedulers: DVFS decisions are made only at task
boundaries (release/execution, preemption and termination
times).

We used the ChronOS [11] real-time Linux kernel in the
implementation. ChronOS integrates Ingo Molnar’s PRE-

EMPT_RT patch, which allows nearly all of the kernel to be
preempted yielding superior interrupt service latencies, along
with support for (single-core and) multicore real-time schedul-
ing. Our platform is an OMAP4430 dual-core, ARM Cortex-
A9 MPCore mounted on a PandaBoard (pandaboard.org).
We chose the ARM platform due to its wide use in embed-
ded systems. After overviewing related work (Section 2) and
describing our implementation setup (Section 3), we report
our experimental results (Section 4).

Our contributions include solutions to the following, real-
time DVFS scheduler implementation problems:

• how to account and track elapsed time in single
and multicore architectures. Most of the past efforts
count processor cycles instead of considering time in-
tervals, which eases the computation logic, but is not
easily applicable on modern hardware and software.
(Sections 3.2 and 4.1.)

• how to deal with transition times in single and mul-
ticore real-time DVFS scheduling. We show that tran-
sition times are non-negligible overheads. We propose
a worst case accounting technique for bounding the

new available total utilization. (Sections 4.1 and 4.3.)
• how to deal with discrete voltage and frequency

levels. We tested the same application with differ-
ent DVFS transition levels, measuring and comparing
power savings. (Section 4.2.)

• how to redesign multicore DVFS schedulers to
reduce synchronization overheads for changing
processor speeds. We propose a transactional based
approach where only the latest core involved in the
speed changing procedure will commit the speed change.
Every other core will abort without retry. (Section 4.3.)

To the best of our knowledge, our work is the first effort at
integrating a suite of single and multicore real-time DVFS
schedulers in a general purpose OS such as Linux, and mea-
suring the schedulers’ actual power and timeliness behaviors
on a community supported embedded hardware such as the
PandaBoard. Our implementation is publicly available at
chronoslinux.org.

2. RELATED WORK
One of the earliest real-time DVFS (single-core) sched-

uler is due to Pillai and Shin [20]. Their basic algorithm,
called static EDF (S-EDF), exploits static slack, and an-
other variant called, cycle conserving EDF (CC-EDF), ex-
ploits dynamic slack. They also present an algorithm called
Look-Ahead EDF (LA-EDF), which reclaims dynamic slack.
Aydin et al. [1] presented another approach for single-core
DVFS EDF scheduling called, dynamic reclaiming algorithm
(DRA). DRA was extended with the one task executing
(OTE) technique of Shin and Choi [24] for fixed priority
algorithms. The resulting algorithm, DRA-OTE, was fur-
ther extended with a speculative technique based on aver-
age task usage, called aggressive speed reduction technique
(AGR) [1]. The same idea of adopting the average task
usage to scale down the processor speed was also adopted
by Chiu et al. in their aggressive look-ahead EDF (ALA-
EDF) [7]. Lawitzky et al. described a DVFS EDF algo-
rithm [14] that extends two slack reclaiming algorithms of
Lin and Brandt [17]. We refer to an implementation of this
algorithm as SNOWDON, as in [22].

However, these works evaluate the algorithms using sim-
ulations. Implementations have been done, but are very
few: Lawitzky et al.’s algorithm [14] was implemented and
evaluated. (They also presented ways to account for tran-
sition times and to avoid time measurement in processor
cycles.) However, the work did not report any actual time-
liness and power measurements. Snowdon et al. develop
power management techniques and present implementation-
based measurements in a body of work [26, 30, 27, 29, 28, 6,
16, 15]. However, these works do not consider task timing
constraints and real-time OS issues. Performance degrada-
tion, feasibility, and usability questions are addressed by Isci
et al. [13] through an implementation-based study, but the
work also targets non real-time systems.

In the multicore DVFS literature, DPM is usually consid-
ered, because on large core count machines, putting cores to
sleep/idle state can provide greater power savings than by
using DVFS alone. One of the first real-time DVFS sched-
uler that considers multicore architectures (with one clock
domain) and EDF is the coordinated voltage and frequency
scaling (CVFS) technique [12], which is an adaptation of
CC-EDF for multicore partitioned scheduling. Seo et al.
[23] further extended CC-EDF, called dynamic repartition-

ing (DR). While CVFS assumes an offline optimal partition
of the tasks, DR does not do so, and dynamically migrates
tasks to balance workloads across cores. Aydin and Yang
also analyze different offline partitioning methods in [2]. Zhu
et al. [21, 31] develop a DVFS scheduler for frame-based
task sets, considering different voltage and frequency islands.
Bhatti et al. consider per core voltage and frequency scaling
[3], and extend DRA for multicores with a technique called
deterministic stretch-to-fit (DSF). However, all these works
focus on simulation-based evaluations.

3. IMPLEMENTATION SETUP

3.1 Power Management
Conventionally, operating systems enter sleep/idle states

after staying in the idle state for a predefined time inter-
val, during which the processor runs the idle task, wast-
ing energy. If the idle intervals occur intermittently and
their length is short, the system can experience performance
degradation, and in general, the power savings may not be
significant. To improve power savings in the idle task, hard-
ware vendors use NOP instructions that consume far less
amount of power then normal instructions (e.g., 20% [18]).
In the Linux kernel port for the ARM architecture, the idle
task mainly consists of the recently introduced wait for in-
terrupt (WFI) instruction [19]. Once issued, this instruction
moves the processor to standby where only the wakeup logic
is clocked, improving the power savings. Deeper sleep/idle
states require the usage of CPUidle governors that are ar-
chitecture dependent, which attempts to “guess” the best
sleep/idle state to transition the core to, obtaining power
savings.

DPM techniques are available in Linux. Additionally,
DVFS techniques can be implemented via CPUfreq gover-
nors, with estimations of processor usage used to scale the
frequency up or down. Both CPUidle and CPUfreq gover-
nors consider transition times.

3.2 Time Keeping
Time keeping in general purpose OSes is not required to

be accurate (especially if this means special hardware, or
synchronization-costly). Time keeping is usually required
for tracing or profiling and other debugging purposes; the
only real requirement is monotonicity along all cores. Linux
maintains monotonicity (current_kernel_time()) along dif-
ferent cores and subsequent time calls. However, this does
not mean that the clock is always timely updated. Timer
interrupts can experience delays, due to non-preemptable
code running concurrently. The system clock is usually not
fine-grained, which does not help in precise estimation of
task execution times. In contrast, real-time DVFS schedul-
ing presumes coherent clock along all cores, monotonicity,
and high resolution.

3.3 ChronOS Linux
ChronOS Linux [11] is a real-time multiprocessor sched-

uler extension of the PREEMPT_RT Linux kernel branch. It
runs on 32/64bit x86 and ARM processors. The reference
Linux version used in this paper is 3.0.10. ChronOS offers
an integrated scheduler for critical, hard, soft, and non real-
time tasks in Linux. Figure 1 illustrates ChronOS schedul-
ing environment. Example critical system tasks include time
keeping and multiprocessor management, which have a higher

8

11

13

15 25

6

17

1

2722

99

Sched RT class Sched Fair class

Sched
ChronOS

98 97 3 2 1 0

Critical
System
Tasks

Hard
Real-Time

Tasks

Soft
Real-Time

Tasks

Non
Real-Time

Tasks

Decreasing
Task

Priority

Figure 1: ChronOS Linux integrated scheduling en-
vironment. Critical, hard, soft and non real-time
tasks must be scheduled with different guarantees.

priority than hard real-time tasks. Hard real-time tasks are
managed by the ChronOS scheduler; all ChronOS tasks have
the same SCHED_FIFO/SCHED_RR Linux priority value. Tasks
with lesser priorities (down to zero) are considered soft real-
time tasks. Non real-time tasks are scheduled by Linux CFS.
(A similar integrated scheduling approach is used in RBED
[5].) In this integrated scheduling environment, tasks run-
ning with higher priority then hard real-time tasks must be
carefully considered. In our real-time DVFS setup, interrupt
handlers are running as critical system tasks.

ChronOS allows implementation of both single and multi-
core schedulers. Multicore schedulers can run concurrently
on any processor (i.e, the partitioned scheduling approach),
or globally synchronizing every processor. We have imple-
mented a suite of different single-core scheduling policies
including S-EDF, CC-EDF, LA-EDF, SNOWDON, DRA,
DRA-OTE, AGR1 and AGR2. Additionally, we have imple-
mented the partitioned versions of S-EDF, CC-EDF, CVFS
and DR by means of a global scheduler that runs concur-
rently or by globally synchronizing all cores.

To change the frequency speed, we interface the scheduler
with the CPUfreq module by creating a new in-kernel“gover-
nor” that accomplishes the required scaling, which provides
portability across different architectures (see Figure 2). A
governor is a kernel object that decides when and how to
change the processor frequency and command the change.
ChronOS schedulers run in the middle of the Linux sched-
uler code that operates with interrupts disabled. Hence,
frequency changes, which may require interrupts to be dis-
abled or to hold a global lock, cannot be issued inside the
ChronOS scheduler. A post schedule processing callback
commands the frequency change, before the control returns
to the dispatched user space task.

3.4 Measurement Framework
To record the power consumption of the device under test

(i.e., the PandaBoard), we measure its instantaneous current
consumption while using a constant voltage supply. Figure
3 shows a schema of our measurement setup. All the current
data were logged by the data logging workstation, which is
directly connected by an optical serial cable with the mea-
surement equipment (AKTAKOM AM-1118). The control
workstation sequentially loads every test on the PandaBoard
and timestamps the recorded data on the remote data log-
ging workstation. A post processing stage was required to
correlate the whole data.

To obtain the power measurements and the deadline sat-

CPUfreq
interface

ChronOS
interface

ChronOS
scheduler

CPUfreq
governor

Power-aware
Real-Time
scheduler

Linux
Kernel
and

architecture
support

Figure 2: To provide portability, a DVFS real-
time scheduler interfaces with the ChronOS API
for choosing the next task to execute and with the
CPUfreq subsystem for frequency scaling.

isfaction ratio (DSR), we run a synthetic application. This
application, originally developed in [11], can run different
workload types that focus on CPU usage, memory usage,
cache trashing, pipeline flush, etc. We adopted the CPU
intensive workload for the evaluation reported here, because
it reasonably mimics a computational data filtering applica-
tion. We ran the single-core tests using a 5-task set with a
hyperperiod of 15 seconds. The same task set was extended
for multicore tests.

4. EXPERIMENTAL RESULTS

4.1 Transition Time
Despite that all our candidate algorithms belong to the

EDF family (which is theoretically optimal for single-cores),
we observed that, they never gave a DSR of 1.0 (i.e., all
deadlines met) on a single-core machine. However, they gave
a DSR of 1.0 when running at the highest frequency, after
disabling DVFS scheduling. This happened at any total uti-
lization and AET/WCET ratio, and jeopardizes the sched-
ulers’ (hard real-time) timeliness assurance. Nevertheless,
their power savings were found to be effective.

Figure 4 shows the board power consumption (Watts) and
the DSR. Each data point in the figure is an average of 9
runs, with an average absolute deviation of ≈ 20mW for
the power consumption and ≈ 0.05 for the DSR. The non
smoothness of the curves is due to i) the low sample rate of
our measurement device, which only gives us approximate
measurements, and ii) the non ideal behavior of the syn-
thetic application that only approximately executes for the

Panda
Board

Power
Supply

Measurement
Device

Control
Workstation

Wall
Power

Data Logging
Workstation

Serial
Connection

Serial
Connection

Current
Sensor

Ethernet
switch

Figure 3: Measurement setup. We measured the
full PandaBoard power consumption.

required amount of time. In Figure 4, within each column,
the task set’s total utilization is changing (at the fixed steps
0.2, 0.4, 0.6, 0.8, and 1.0). Within each column, the ratio
of tasks’ AET to WCET is fixed. In the rightmost column,
where the ratio of AET to WCET is 1.0, power savings is
entirely due to static slack, and all curves, except that of
classical EDF (which is non power-aware) overlap.

Note that frequency scaling saves more power then the idle
task: DRA-OTE gives a power savings of ≈ 350mW (on the
whole board). The power that can be saved exploiting the
dynamic slack is shown in the other columns in Figure 4.
Smaller the total utilization, smaller is the power savings
due to dynamic slack, and greater is the power savings due
to static slack. The power savings due to dynamic slack lie
under the S-EDF curve, and greater the total utilization,
greater is the power savings due to dynamic slack. Peak
savings are ≈ 350mW using the best performing algorithms
(DRA-OTE and AGRs) outperforming the idle task (which
moves the processor to the idle state).

We note that the power trends are extremely similar to
those in the original works (which were largely based on sim-
ulation studies). What is not considered in those works is
the penalty due to scheduler and voltage/frequency scaling,
which results in deviations from predicted execution times.
Such deviations manifest also for classical EDF, but only
when the total utilization is close to 1.0: the rightmost plot
in Figure 4 shows the DSR for total utilization 1.0, and
AET/WCET ratio of 1.0 for a DSR of 0.9365. This demon-
strates that scheduler overheads and non accurate account-
ing of critical system events/tasks (which have higher prior-
ity than ChronOS tasks) matter in an integrated scheduling
environment when the task set fully utilizes the processing
resources. (See also Section 4.3.)

Different algorithms expose different penalty patterns. S-
EDF and CC-EDF are very close to EDF, and exhibit low
DSR degradations. DRA, DRA-OTE, and AGR1 are worse
at lower AET/WCET ratios, while AGR2 is worse at higher
AET/WCET ratios. LA-EDF exhibits the worst DSR com-
pleting on time the 60% of the jobs at the maximum total
utilization.

We also note that, there is no explicit correlation between
power savings and DSR (i.e., it is not true that lower DSR
means greater power savings).

Accounting transition times. To solve this problem, we
account for speed transition in the WCET at task subscrip-
tion. Such accounting is done in the kernel space because
is the CPUfreq module that gives the worst case transition
time. Lawitzky et al. indicate that, in single-core systems,
each task’s job WCET must be augmented by two transition
times [14]. We found that this is correct, and extended the
same assumption for multicore partitioned scheduling with
one clock domain. (See Section 4.3.)

Adding the transition time reduces the total utilization of
the task set. This is a function of the number and charac-
teristic of the tasks and the duration of the transition time.
In particular, for short task durations and high count task
sets, the total available utilization is evidently reduced. The
maximum total utilization for EDF is reduced in the single-
core case to: utot = 1− 2ttrans

Pn
1

1
pi

.

Transition avoidance. Besides accounting for transition
times, we also added a transition avoidance check at each
rescheduling point, similar to [14]. A speed reduction tran-
sition is avoided when the dynamic slack time earned is less

 2.2

 2.4

 2.6

 2.8

 3
bo

ar
d

po
w

er
 c

on
su

m
pt

io
n

(W
)

0.2 AET/WCET 0.4 AET/WCET 0.6 AET/WCET 0.8 AET/WCET 1.0 AET/WCET

EDF
S-EDF

CC-EDF
LA-EDF

SNOWDON
DRA

DRA-OTE
AGR1
AGR2

 0.6

 0.8

 1

 0
.2

 0
.4

 0
.6

 0
.8

 1

D
S

R

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

total utilization

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

Figure 4: Board power consumption (top) and deadline satisfaction ratio (bottom) of single-core DVFS
algorithms. Hard real-time tasks in ChronOS cannot miss their deadline.

or equal to the transition cost. These two simple techniques
improved the algorithm DSR to 1: Figure 6 shows the DSR
and power improvements of CC-EDF by introducing transi-
tion time accounting and transition avoidance.

Transition timestamping. Since we cannot rely our es-
timation on processor cycles, we require precise timekeep-
ing. To calculate the exact amount of WCET consumed
by each task’s job, it is necessary to trace and record every
frequency transition. We timestamp the speed transition
before it actually happens. A more precise timestamping,
in an architecture-independent manner, is future work.

4.2 Discrete Voltage and Frequency Levels
Vast majority of new processors support a broad range of

synthesizable frequencies, but not voltages. The Linux port
for the OMAP4430/PandaBoard currently supports only four
voltage and frequency levels (we call this set of levels, orig-
inal). Without manipulating the voltage levels, we extend
the number of available frequencies to 10 and 35 to under-
stand whether the power savings improve (we named these
sets of frequencies standard and many). In most of the re-
sults presented, we used the standard set.

Figure 5 reports the mapping between algorithm’s required
utilization and adopted frequency (for each frequency set,
original, standard, and many) and voltage.

Figure 5 shows the power and DSR of CC-EDF on a single-
core, with the original voltage/frequency setting and with
the augmented ones (with and without considering transi-
tion times). For the rest of the paper, we focus on CC-EDF

as the reference algorithm.
From Figure 6, it is clear that having many frequency

steps improve power savings. These savings are not more
than 100mW comparing original and many in the optimal
situation, when the original curve is the farthest from the
many curve. Thus, more scaling points improve the power
savings. However, as indicated in [4], width modulation of
fewer scaling points nevertheless obtains good power savings.

Figure 6 also shows the DSR, with and without consid-
ering the transition times. We notice that considering the
transition times always gives good DSR results. When tran-
sition times are not considered, power savings are still ob-
tained, but the behavior is not deterministic.

Exploiting the frequency difference. When using discrete
levels of voltages, the chosen voltage is always the upper
bound that can guarantee that the processor runs safely at
the specified frequency. The difference between the exact
voltage that map to the requested frequency and the volt-
age value chosen is quadratically proportional to the amount
of further power that can be saved, providing a rich set of
available voltages. Even though there are a broad range of
synthesizable frequencies, it is unlikely that there exist one
for each utilization value requested by the scheduler. As
shown in Figure 5, there are different buckets of frequencies
running at the bucket’s maximum value. The result is that,
the current task is running at a frequency greater than the
one requested by the scheduler. We observed that the ex-
pected finishing time of the task at the two different frequen-
cies is different (AET or WCET), and this time difference

 2.2

 2.4

 2.6

 2.8

 3
bo

ar
d

po
w

er
 c

on
su

m
pt

io
n

(W
)

0.2 AET/WCET 0.4 AET/WCET 0.6 AET/WCET 0.8 AET/WCET 1.0 AET/WCET

original
standard

many
original tt

standard tt
many tt

 0.4

 0.6

 0.8

 1

 0
.2

 0
.4

 0
.6

 0
.8

 1

D
S

R

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

total utilization

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

Figure 6: Board power consumption and DSR of the CC-EDF algorithm at different sets of discrete frequency
levels (original, standard and many), with and without considering transition times (original, standard, many,
original tt, standard tt, and many tt).

can be used to further slow down the processor for the next
task. A similar idea is used in the CVFS algorithm. This
technique can be used in single and multicore algorithms.
We apply this technique in single-core CC-EDF, and show
the resulting power improvements in Figure 7. The result is
that CC-EDF’s net power is not always improved using this
technique. A 50mW power improvement is shown in the 0.8
AET/WCET column. Also, note that, without considering
transition times, DSR reduces.

4.3 Multicore DVFS Scheduling
Due to the single clock domain restriction of the Pand-

aBoard (newest product in the embedded market), the only
two relevant multicore DVFS schedulers in the literature in-
clude CVFS [12] and DR [23]. We implemented both. Both
CVFS and DR are partitioned scheduling algorithms, which
allow different partitioning schemes to be used (we gener-
ated them offline). Both of them take advantage of a bal-
anced partition. DR dynamically migrates tasks to balance
the load across cores, temporarily breaking the partition.
CVFS tracks the difference between the requested frequency
and the actual frequency at which the processor is running.
In a multicore environment with a single clock domain, the
maximum frequency requested among every core is selected
as the running frequency. Coordination between cores is
required.

Concurrency control. Partitioned algorithms running in a

multicore processor with a single clock domain suffer from
the problem of how to access shared resources, which in-
clude clock domain registers, the global list of all frequency
changes, their timestamps, and per-core desired frequency
value arrays. We developed a transactional protocol that
avoids conflicts when cores concurrently access these re-
sources. The protocol detects concurrent accesses eagerly,
and speculatively aborts the oldest requesting core. Even
though the protocol should reduce per task transition times,
we could not measure that evidence on our dual-core pro-
cessor. In an M -core partitioned environment with a sin-
gle clock domain, which must be serially accessed, every
task’s job is subject to 2M transition times. This worst
case happens when no one core is able to detect a conflict
early, and each core reduces its frequency. The reduced
utilization per core can be recalculated as 2Mttrans (in-
stead of 2ttrans). The maximum total utilization for par-
titioned EDF is reduced in the multicore case to utot =
(M − 1)/2− 2Mttrans

Pn
1

1
pi

.

In Figure 8, we compare board power consumption of CC-
EDF and CVFS accounting for transition times with a total
utilization Ut = 1 and Ut = 2. In general, CVFS saves
more power then CC-EDF, around 100mW with Ut = 1 and
200mW with Ut = 2. The (dynamic) power consumption of
the processor increases to circa 3.7W , fully loading both
cores. A rough estimation of the power consumption of the
chip is that each core, fully loaded, consumes 800mW . The

 2.2

 2.4

 2.6

 2.8

 3
bo

ar
d

po
w

er
 c

on
su

m
pt

io
n

(W
)

0.2 AET/WCET 0.4 AET/WCET 0.6 AET/WCET 0.8 AET/WCET 1.0 AET/WCET

CC-EDF
CVFS

CC-EDF tt
CVFS tt

 0.6

 0.8

 1

 0
.2

 0
.4

 0
.6

 0
.8

 1

D
S

R

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

total utilization

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

Figure 7: CC-EDF algorithm’s board power consumption and DSR, with and without the CVFS optimization
for single-core, and with and without transition times (CC-EDF, CVFS, CC-EDF tt, and CVFS tt).

rest of the power consumption (2.1W) is due to the CPU’s
static power consumption and that of other on-chip and off-
chip devices.

In Figure 8, it is also evident that the DSR is not 1, despite
considering the transition times and using our technique that
reduces the waiting time for changing the processor speed.
With trace-based debugging (i.e., using ftrace), we realized
that, this is due to our integrated scheduling environment.
Since ChronOS Linux is running atop the PREEMPT_RT patch,
different non preemptable sections of Linux code can deviate
our scheduler. We did not observe this in the single-core
experiments, as the work was migrated to the other core.

Comparing Figures 8 and 7, we notice that the total power
consumption when running the same load on one CPU or
on two CPUs (with load balanced) consumes similar power.
With DR, we obtain similar power and DSR results as CVFS
for these workloads (where few migrations are required).

Stop the World. Instead of processor cores concurrently
changing the clock, an alternative is to adopt a “stop the
world” approach by globally synchronizing scheduling: the
scheduling code runs on a single processor and all the other
processors spin-await a decision. This does not require the
previously described infrastructure. However, it increases
the execution overhead, and also, the transition times are
difficult to estimate and bound in the worst case.

5. CONCLUSIONS
Our major conclusion is that real-time DVFS scheduling

can save power, but will likely degrade DSRs. After incorpo-

rating expedients from practice, the DSR degradation trans-
lates into reduced schedulable utilization bounds. When the
utilization bound is significantly degraded, DVFS scheduling
is not effective, as the processor idle state will yield similar
power savings. (This is also the conclusion in [16].) When
transition times are short (compared to task periods), power
savings is larger, and the utilization bound is not seriously
degraded. This is valid for both single and multicores.

The low core count of our designated processor did not
let us show the benefits of our transactional approach for
accessing shared resources (needed to make a speed transi-
tion). With emerging high core-count embedded hardware,
we expect benefits from this approach.

6. REFERENCES
[1] H. Aydin, R. Melhem, et al. Power-aware scheduling

for periodic real-time tasks. Computers, IEEE
Transactions on, 53(5):584 – 600, 2004.

[2] H. Aydin and Q. Yang. Energy-aware partitioning for
multiprocessor real-time systems. In IPDPS, page 9
pp., 2003.

[3] M. Bhatti, C. Belleudy, and M. Auguin. An inter-task
real time DVFS scheme for multiprocessor embedded
systems. In DASIP, pages 136 –143, oct. 2010.

[4] E. Bini, G. Buttazzo, and G. Lipari. Speed
modulation in energy-aware real-time systems. In
ECRTS, pages 3–10, 2005.

[5] S. Brandt, S. Banachowski, C. Lin, and T. Bisson.
Dynamic integrated scheduling of hard real-time, soft

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6
bo

ar
d

po
w

er
 c

on
su

m
pt

io
n

(W
)

0.2 AET/WCET 0.4 AET/WCET 0.6 AET/WCET 0.8 AET/WCET 1.0 AET/WCET

CC-EDF ut1
CVFS ut1

CC-EDF ut2
CVFS ut2

 0.6

 0.8

 1

 0
.2

 0
.4

 0
.6

 0
.8

 1

D
S

R

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

total utilization relative to ut

 0
.2

 0
.4

 0
.6

 0
.8

 1 0
.2

 0
.4

 0
.6

 0
.8

 1

Figure 8: CC-EDF and CVFS running on dual core, considering transition times, with total utilization Ut = 1
(ut1) and Ut = 2 (ut2).

real-time, and non-real-time processes. In RTSS, pages
396 – 407, 2003.

[6] A. Carroll and G. Heiser. An analysis of power
consumption in a smartphone. In USENIX ATC,
pages 21–21, 2010.

[7] L.-Y. Chiou, H.-E. Lim, and Y.-S. Chen. Aggressive
look-ahead earliest deadline first algorithm. In
TENCON, pages 1 –4, 2007.

[8] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Comput.
Surv., 43(4):35:1–35:44, Oct. 2011.

[9] P. de Langen and B. Juurlink. Leakage-aware
multiprocessor scheduling for low power. In IPDPS,
page 8 pp., 2006.

[10] P. de Langen and B. Juurlink. Trade-offs between
voltage scaling and processor shutdown for low-energy
embedded multiprocessors. In SAMOS, pages 75–85,
2007.

[11] M. Dellinger, P. Garyali, and B. Ravindran. Chronos
linux: A best-effort real-time multiprocessor linux
kernel. In DAC, pages 474 –479, 2011.

[12] V. Devadas and H. Aydin. Coordinated power
management of periodic real-time tasks on chip
multiprocessors. In Int’l. Green Computing Conf.,
pages 61 –72, 2010.

[13] C. Isci, A. Buyuktosunoglu, et al. An analysis of

efficient multi-core global power management policies:
Maximizing performance for a given power budget. In
MICRO, pages 347–358, 2006.

[14] M. P. Lawitzky, D. C. Snowdon, and S. M. Petters.
Integrating real time and power management in a real
system. In OSPERT, 2008.

[15] E. Le Sueur and G. Heiser. Dynamic voltage and
frequency scaling: The laws of diminishing returns. In
HotPower, Oct 2010.

[16] E. Le Sueur and G. Heiser. Slow down or sleep, that is
the question. In USENIX ATC, pages 16–16, 2011.

[17] C. Lin and S. A. Brandt. Improving soft real-time
performance through better slack reclaiming. In
RTSS, pages 410–421, 2005.

[18] T. Pering, T. Burd, and R. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms.
In ISLPED, pages 76–81, 1998.

[19] L. Pieralisi. Consolidating linux power management on
arm multiprocessor systems, 2011.

[20] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In
SOSP, pages 89–102, 2001.

[21] X. Qi and D. Zhu. Power management for real-time
embedded systems on block-partitioned multicore
platforms. In ICESS, pages 110–117, 2008.

[22] S. Saha and B. Ravindran. An experimental

 200

 400

 600

 800

 1000

 0 0.2 0.4 0.6 0.8 1
 1000

 1200

 1400

 1600

 1800
S

yn
th

et
iz

ed
 F

re
qu

en
cy

 (
M

H
z)

V
ol

ta
ge

 (
m

V
)

Algorithm’s required utilization

many
standard

original
voltage

Figure 5: Three different sets of frequency levels (4
levels in the original setup, 10 levels in the standard
setup, and 35 in the setup called many), and a single
set of voltage levels.

evaluation of real-time dvfs scheduling algorithms. In
SYSTOR, 2012.

[23] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient
scheduling of real-time tasks on multicore processors.
IEEE TPDS, 19(11):1540 –1552, nov. 2008.

[24] Y. Shin and K. Choi. Power conscious fixed priority
scheduling for hard real-time systems. In DAC, pages
134–139, 1999.

[25] A. Sinkar and N. S. Kim. Analyzing potential power
reduction with adaptive voltage positioning optimized
for multicore processors. In ISLPED, pages 189–194,
New York, NY, USA, 2009. ACM.

[26] D. C. Snowdon, E. Le Sueur, et al. Koala: a platform
for os-level power management. In EuroSys, pages
289–302, 2009.

[27] D. C. Snowdon, S. M. Petters, and G. Heiser. Power
measurement as the basis for power management. In
OSPERT, 2005.

[28] D. C. Snowdon, S. M. Petters, and G. Heiser.
Accurate on-line prediction of processor and memory
energy usage under voltage scaling. In EMSOFT,
pages 84–93, 2007.

[29] D. C. Snowdon, S. Ruocco, and G. Heiser. Power
management and dynamic voltage scaling: Myths and
facts. In Workshop on Power Aware Real-time
Computing, 2005.

[30] D. C. Snowdon, G. van der Linden, et al. Accurate
run-time prediction of performance degradation under
frequency scaling. In OSPERT, 2007.

[31] D. Zhu, R. Melhem, and B. R. Childers. Scheduling
with dynamic voltage/speed adjustment using slack
reclamation in multiprocessor real-time systems. IEEE
TPDS, 14(7):686–700, jul 2003.

