
ChronOS Linux: A Best-Effort Real-Time Multiprocessor
Linux Kernel

Matthew Dellinger, Piyush Garyali, and Binoy Ravindran
ECE Dept., Virgina Tech

Blacksburg, VA 24061, USA
{mdelling,piyushg,binoy}@vt.edu

ABSTRACT
We present ChronOS Linux, a best-effort real-time Linux
kernel for chip multiprocessors (CMPs). ChronOS addresses
the intersection of three problem spaces: a) OS-support for
obtaining best-effort timing assurances, b) real-time Linux
kernel augmented with the PREEMPT_RT patch, and c) OS
support for CMP-aware real-time scheduling. While each of
these spaces have been studied in the past, their intersec-
tion, which has strong problem motivations, was previously
empty. Best-effort timeliness targets real-time applications
with run-time uncertainties and resource overloads, and op-
timizes collective application timeliness — as specified by
the application. ChronOS directly supports the implemen-
tation of best-effort real-time schedulers on CMPs, in ad-
dition to others, in the global and partitioned scheduling
disciplines. ChronOS extends the PREEMPT RT Linux
patch, and thus provides full kernel preemptibility and re-
tains stock Linux features. We validate our claims by re-
porting on the implementation of a suite of best-effort and
non-best-effort CMP schedulers on a quad-core AMD Phe-
nom platform.

Categories and Subject Descriptors
E.2.1 [Embedded Software and Tools]: Real-time oper-
ating systems and middleware

General Terms
Design

Keywords
Real-time, task scheduling, Linux

1. INTRODUCTION
Chip manufacturers are increasingly using chip- and system-

level parallelism to improve performance by manufacturing a
new generation of processors with multiple cores on a chip,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

called chip multiprocessors (or CMPs). Consequently, the
design of multiprocessor real-time scheduling algorithms has
become important in order to allow real-time applications to
take advantage of CMPs. This also motivates the need for
operating systems, which must support CMP scheduling.

The real-time problem space includes application contexts
where key aspects of application behavior—e.g., task ar-
rivals, execution times, resource access patterns—are de-
terministically bounded or known a-priori. CMP real-time
schedulers that target this space provide schedulability uti-
lization bounds, U , below which all tasks meet their dead-
lines. Examples include the Pfair and LLREF algorithms
with U = m and the global EDF algorithms with U ≈ m/2
on an m-processor CMP [3]. Although this is an extremely
important real-time application space, there also exist some
real-time applications with behaviors outside this envelope
— e.g., those with uncertainties on task arrival, execution-
time, and resource access behaviors, caused due to data- and
context-dependent executions, resulting in overloads (i.e.,
U > m) [5]. During overloads, such applications typically
desire “best-effort” timing assurance in the sense that pro-
cessor cycles are assured to be allocated in a way that op-
timizes, and enables the reasoning of, collective application
timeliness — as specified by the application [9]. Best-effort
real-time scheduling requires, among other things, a two-way
interaction between the application and OS kernel, espe-
cially for asynchronously and safely aborting selected tasks.

Our primary motivation in this paper is to create an OS
platform that can support best-effort real-time schedulers on
CMPs. When creating an RTOS platform, the open-source
Linux kernel is often a compelling base platform choice.
Linux is one of the most advanced operating systems with
wide acceptance in industry, used across various form factors
— from enterprise level servers to embedded devices.

In the past, efforts have been made to provide real-time
extensions to the Linux kernel. Two popular extensions,
RTAI and Xenomai, are built around the idea of Linux run-
ning as a task above the ADEOS nanokernel [1]. Both have
the downside that real-time tasks are written to the APIs of
the extension, rather than standard Linux APIs. More re-
cently, the Linux kernel team’s PREEMPT_RT real-time patch
enables complete kernel preemption and improves interrupt
latencies, thus allowing real-time tasks to execute within
Linux itself. The Linux kernel augmented with the PRE-

EMPT_RT patch is therefore a compelling RTOS platform.
Thus, our goal is to create an OS platform with the fol-

lowing properties:
P1: The platform must support the implementation of

best-effort real-time schedulers.
P2: The platform must support CMP real-time schedul-

ing.
P3: The platform must be based on the Linux kernel.
P4: The platform must use the PREEMPT_RT patch.
We present ChronOS Linux, which provides these prop-

erties. ChronOS Linux (hereafter refered to as ChronOS)
supports the notion of real-time scheduling segments that fa-
cilitate the expression and enforcement of time constraints,
and asynchronous and safe task termination. ChronOS pro-
vides a scheduling framework for the implementation of a
broad range of CMP real-time schedulers, best-effort, non-
best-effort, global, and partitioned, as scheduler plugins. We
implemented a suite of schedulers in ChronOS including G-
EDF, G-NP-EDF, P-EDF [3], P-DASA [6], and GUA [7] on
a quad-core AMD Phenom platform. Our experiments re-
veal that the scheduler behaviors are consistent with their
theoretical behaviors, and the effectiveness of ChronOS.

Past efforts that overlap with a subset of ChronOS’s prob-
lem space include the Alpha OS [9], RED-Linux [11], and
LITMUSRT [3]. Alpha, which pioneered the best-effort real-
time concept, is not Linux-based. RED-Linux supports fixed
and dynamic priority scheduling, but does not support CMPs.
LITMUSRT provides extensive support for CMP schedul-
ing on Linux, but it does not support best-effort real-time
scheduling. Neither RED-Linux nor LITMUSRT use the
PREEMPT_RT patch. Thus, to the best of our knowledge,
ChronOS is the only Linux/PREEMPT_RT kernel that supports
CMP real-time scheduling including best-effort scheduling
— the paper’s contribution.

2. PREEMPT_RT REAL-TIME PATCH
The stock Linux kernel provides soft real-time capabilities,

such as the POSIX primitives and the ability to set prior-
ities. The kernel provides two real-time scheduling policies
— SCHED_FIFO and SCHED_RR and a “nice” based scheduling
policy called SCHED_NORMAL. SCHED_FIFO executes processes
in FIFO order within a priority and will only preempt a task
to execute a newly arrived task at a higher priority. This
is primarily a POSIX-specified feature. SCHED_RR, on the
other hand, schedules processes of the same priority in a
round robin fashion while favoring higher priority tasks.

In order to bring in real-time semantics to the kernel, it
is required to have a preemptible kernel. To achieve this
we use the PREEMPT_RT patch which enables complete kernel
preemption along with a generic clock event layer with high
resolution support. The patch improves interrupt latencies
and allows preemption of most parts of the Linux kernel
except for a few regions which are inherently unpreemptible,
such as the task scheduler. In-kernel locking primitives have
been re-implemented using rtmutexes. As a result, critical
sections that are protected with spinlock_t or rwlock_t

are preemptible. Priority inheritance has been implemented
for in-kernel spinlocks and semaphores. Interrupt handlers
in the kernel have been converted into preemptible kernel
threads. The Linux timer APIs have been converted into
separate infrastructure for high resolution kernel timers.

3. CHRONOS REAL-TIME SCHEDULER

3.1 Priority Bit-map and Run-queues
There are 140 priority levels in Linux, represented as a

per-processor bit-map. [0 . . . 99] are referred to as real-time
priorities while [100 . . . 139] are called “nice” priorities. In
the kernel-space, “0” is the highest real-time priority while
“99” is the least (which is opposite to that in the user-space).
Each CPU has a run-queue of active tasks at a priority.
The scheduler starts from the highest priority bit in the
processor’s bit-map, looks for tasks at that priority level
and executes them before going to the next level.

The use of the PREEMPT_RT patch significantly complicated
scheduling, because interrupts now reside in the same prior-
ity space as real-time tasks. We therefore cannot take the
same approach as Litmus and place our tasks in a priority
band higher than all other tasks in the system, because this
would block interrupts, which we may need. In order to facil-
itate working on the real-time tasks, for every priority level
in the bit-map we create another queue called the ChronOS
real-time run-queue (CRT-RQ) which holds references to the
ChronOS real-time tasks in the Linux run-queue. The CRT-

RQ is therefore always a subset of the Linux run-queue. Tasks
can therefore be given a priority representing their depen-
dence on various interrupts.

3.2 Scheduling Real-Time Tasks
The ChronOS scheduler extends the Linux scheduler. Ev-

ery ChronOS real-time task starts as a Linux real-time task
scheduled under SCHED_FIFO. It becomes a ChronOS real-
time task by entering a real-time segment. A real-time
segment is defined as a portion of the thread which needs
to be executed with real-time time constraints. This can
be done using the following system calls in ChronOS: be-
gin_rt_seg() is used to indicate the start of a real-time
scheduling segment and also to provide the real-time tim-
ing constraints for a given task. end_rt_seg() indicates the
end of a real-time scheduling segment. We add additional
parameters to the struct task_struct to specify the real-
time properties of a task, such as the task’s worst case execu-
tion cost (WCET), deadline, period and time-utility function
(TUF). These are set during the begin_rt_seg() system call.

To schedule, we hook into the existing Linux SCHED_FIFO

scheduler. After SCHED_FIFO has found the highest priority,
we call the ChronOS scheduler. When a ChronOS scheduler
is enabled and the CRT-RQ for that priority is not empty, the
ChronOS scheduler selects a task from the CRT-RQ based
on the scheduling algorithm selected, and returns the task
to SCHED_FIFO for execution. Therefore, a ChronOS real-
time task executes before a Linux real-time task of the same
priority, but after a Linux real-time task of a greater priority.

The real-time scheduler is invoked at various scheduling
events. A scheduling event is defined as a trigger that forces
the system into a scheduling cycle resulting in a call to the
scheduler, which selects a new task. In ChronOS we define
the following scheduling events.

Task begins a segment – When a task begins its seg-
ment, it is added to the CRT-RQ and the scheduler is invoked.
At that time, the scheduling algorithm selects the best task
from the CRT-RQ and returns it to SCHED_FIFO.

Task ends a segment – When a task finishes its schedul-
ing segment, the task is removed from the CRT-RQ and the
scheduler is invoked.

Resource is requested – When a task requests for a re-
source, ChronOS tags the task as RESOURCE_REQUESTED and
invokes the scheduler. This is done to let the scheduling al-
gorithm look at the dependency chain based on the resource

Figure 1: ChronOS scheduling approach on a single-
processor system

requested and pick the task that is best suited for execution.
Resource is released – When a task releases a resource,

ChronOS invokes the scheduler in order to allow a new task
to be picked which might be blocking on the resource that
was just released. The decision to choose the new task is
done by the scheduling algorithm.

A scheduling algorithm is selected via the set_scheduler()
system call. All scheduling algorithms are created as Linux
modules in ChronOS which provides the flexibility to add
or remove any scheduling algorithm from a running kernel
without restarting the system. The scheduling algorithms
are implemented in a modular fashion using a set of func-
tions that we refer to as the “scheduler plugin”. Once a
scheduler is selected for a set of processors, all the real-time
tasks that are added to the system on those processors are
scheduled using the the selected scheduling algorithm.

4. SINGLE PROCESSOR SCHEDULING
Fig. 1 illustrates an example of scheduling on a single pro-

cessor machine. As the scheduling algorithms are written
as modules in ChronOS, they can be dynamically loaded
into a running kernel. This adds the scheduling algorithms
to the list of available schedulers. In Fig. 1, the call to
set_scheduler() is made from the real-time application to
select EDF as the real-time scheduler. ChronOS checks if
the EDF kernel module is available. If the scheduler is found,
ChronOS loads the plugin and makes it the default ChronOS
local scheduler for running real-time tasks. All the real-time
tasks are now added to the CRT-RQ at their deadline position.
At every scheduling event, the ChronOS scheduler invokes
sched_edf(). Since items are inserted in order, the head of
the CRT-RQ now represents the earliest deadline task, which
is returned to SCHED_FIFO for execution. For algorithms
that use dynamic keys, such as TUF-based algorithms, the
scheduler would have to sort the CRT-RQ.

5. MULTIPROCESSOR SCHEDULING
Scheduling on multiprocessors can be mainly categorized

into three forms – partitioned, clustered, and global schedul-
ing. ChronOS supports all these variants. Since clustering
is simply a combination of the two, we only describe the
details of partitioned and global architectures.

5.1 Partitioned Scheduling
Partitioned scheduling can be described as uniprocessor

scheduling done on multiprocessors. The key idea of parti-
tioned scheduling is to divide the task-set using an off-line
heuristic (such as first-fit or best-fit) to partitioning a set of
tasks on M processors. This has been shown to be equiva-
lent to the bin-packing problem [10] and hence NP-hard in

Figure 2: ChronOS global scheduling approach on a
multiprocessor system

the strong sense. Baruah et al. present a polynomial-time
algorithm to partition collection of sporadic tasks onto M
processors in [2].

To use partitioned scheduling algorithms on ChronOS, we
partition the task-set using off-line polynomial-time heuris-
tics. For an M processor system, the heuristics divides the
task-sets into M processor bins. Once all the tasks have been
divided, the affinity of each of the tasks is set to the pro-
cessor they have been assigned to. The tasks are added to
the CRT-RQ of their respective assigned processors. As parti-
tioned scheduling is an extension of uniprocessor scheduling,
the partitioned scheduler is set as the local ChronOS sched-
uler on all processors using the set_scheduler() system
call. Each processor runs its scheduling algorithm indepen-
dently. At every scheduling event, the processor enters its
local scheduler, looks at the local CRT-RQ, and picks the next
task to be executed.

5.2 Global Scheduling
Most of the multiprocessor scheduling algorithms, such

as G-EDF, Pfair and GUA are based on global scheduling.
The main idea behind global scheduling is that the tasks
are assigned to a global queue instead of individual local
queues. The scheduling algorithm on each processor looks at
the global queue to make a scheduling decision. Clustering
is a simple extension of global scheduling wherein multiple
global scheduling domains are created, each of which spans
some subset of the systems processors.

Fig. 2 illustrates the global scheduling approach used in
ChronOS. In order to implement global scheduling, we cre-
ate another level of scheduling abstraction. At the top we
have the “global scheduler” which looks at the “global task
queue”. The global scheduler maps to a “local scheduler” on
individual processors which extends from SCHED_FIFO. The
global scheduler (invoked on a processor) either picks the top
task or the top M tasks, depending on its type. In the lat-
ter case, these tasks are given to the task mapping algorithm
which maps these tasks on M underlying processors. The
tasks assigned by the task mapping algorithm are pushed
into the “globally assigned task” block from where the “task
puller” on each CPU picks up the task and moves it to the

(a) (b)

Figure 3: Global scheduling architecture models in ChronOS (a) “Application concurrent” model (b) “Stop-
the-World” model

head of its local queue. The default local scheduling algo-
rithm for global scheduling algorithms on each processor is
FIFO, which picks the head of the CRT-RQ queue and gives
the task to SCHED_FIFO for execution.

There are two ways in which global scheduling can be
achieved. In the“Application Concurrent”scheduling model,
the global scheduler (such as G-NP-EDF) picks a task for it-
self. In the “Stop-the-World”(STW) scheduling model, the
global scheduler (such as Pfair or GUA) picks the tasks for
all M available processors.

5.2.1 Application Concurrent Scheduling Model
Fig. 3(a) illustrates the application concurrent scheduling

model. For the sake of explanation of the model, we will
assume that the scheduling algorithm picks the task at the
head of the queue, and task execution is non-preemptible.
At the beginning, task T6 is running on processor P0 and
task T8 is running on processor P1. As shown, T8 finishes
before T6. However, T6 is not preempted on P0. After T8

finishes, it generates a scheduling event. P1 enters the global
scheduler, picks the first eligible task T3 from the global
queue and assigns it to P1. The local scheduler on P1 pulls
the task T3 and starts executing it. While P1 pulls its task,
T6 finishes on P0 and generates a scheduling event. It pulls
T1 from the global queue and starts executing it without
preempting T3 on P1. The same procedure is repeated for
other scheduling events.

There might be a scenario when both processors finish
their tasks concurrently. As shown in the Fig. 3(a), when T2

finishes on P0, T4 finishes on P1. As the global task queue is
shared between processors, while P0 enters the global sched-
uler, P1 blocks. When P0 finishes, P1 unblocks and enters
the scheduler. There may also be a case where P1 is not ex-
ecuting a real-time task when P0 schedules. In such a case,
an “Inter-processor Interrupt” (IPI) is sent to P1 to force it
to reschedule.

G-NP-EDF and G-FIFO are some of the algorithms that
use such an architecture model. The downside of the appli-
cation concurrent model is that it is difficult to implement
scheduling algorithms that consider resource dependencies.
Additionally, since the schedule is only generated for a single
processor, there is no way to implement optimal algorithms
such as LLREF or PFair.

5.2.2 Stop-the-World Scheduling Model
In order to allow optimal global scheduling algorithms

and resource management, ChronOS implements the STW
scheduling model. Fig. 3(b) provides an illustration of the
model. The figure shows the dependency relation of the
tasks in the global task queue with each other. Task T4

needs a resource owned by task T2 which in turn requires a
resource held by task T1. In a similar fashion, task T6 needs
a resource owned by task T5. Task T3 does not have any
dependents. Let us assume that the scheduling algorithm
considers the tasks that have the maximum dependents as
the most eligible tasks for execution.

Fig. 3(b) shows that tasks T1 and T5 are currently execut-
ing on processors P0 and P1, respectively. Task T5 finishes
first and generates a scheduling event. In the STW model,
once a scheduling event is generated, the schedule needs to
be created for all the processors. This requires a processor
to be able to force a scheduling event on all other proces-
sors. When task T5 triggers the scheduling event, processor
P1 sends an (IPI) to all the processors which forces the pro-
cessors to schedule.

In the example shown in Fig. 3(b), processor P1 sends
an IPI to all processors. After sending the IPI, P1 enters
its global scheduler and looks at the available tasks in the
run-queue to create the schedule. Meanwhile, processor P0

receives the IPI and is forced into the scheduler. However, as
P1 is already in the global scheduler, P0 blocks. The global
scheduler on P1 picks two eligible tasks (assuming a two-
processor system in the example) and hands these tasks to
the mapping algorithm. The task mapper pushes these tasks
into the “globally assigned task” block of each processor.
Each processor pulls its assigned task to the head of its local
queue which is then executed by the Linux scheduler.

5.3 Mapping Tasks to Processors
Fig. 4 illustrates the mapping algorithm used in ChronOS

for global scheduling. The job of the algorithm is to take the
M most eligible tasks that have been selected by the globlal
scheduler and map them to the M available processors such
that task migrations are reduced and cache coherence is pre-
served. The algorithm shown in Fig. 4 is selected as the de-
fault for global scheduling algorithms. However, the default
task-mapper can be overridden in ChronOS.

The mapping is done using a three-pass algorithm. In
Fig. 4 tasks RT5, RT8, RT1 and RT4 are four real-time tasks
that have been selected by the global scheduling algorithm.
Each run-queue shows the tasks that belong to the individ-
ual processors. We also highlight the current running task
on each processor before the scheduling event was triggered.
Task RT2 is the current running task on processor P0, task
RT5 on P1, task RT9 on P2, and task RT7 on P3.

In the first pass, the algorithm examines the final schedule
and maps currently running tasks to the processors they
are running on. As shown in Fig. 4, task RT5, the current
running task on P1, is mapped to P1. In the second pass, the
algorithm examines the final schedule and maps tasks to the
processor they are currently on. This prevents tasks from
being unnecessarily migrated. As shown, since task RT4

resides on processor P0, it is mapped there. In the similar
fashion, task RT8 is mapped to P2. In the last pass, the
leftover tasks are mapped to the remaining processor(s). As
shown, task RT1 is assigned to processor P3. Since task RT1

resides on processor P0, this step results in the migration of
the mapped tasks.

If the final schedule consists of M tasks that all belong to
the same processor, the worst case migration cost is M −
1 migrations. In such cases, cache-aware scheduling algo-
rithms can be used to create a cache conscious schedule
which limits migrations. Guan et al. [8] and Calandrino et
al. [4] present cache-aware real-time scheduling algorithms.

6. EXPERIMENTAL EVALUATION
To evaluate the performance of ChronOS, we conducted

experiments on a quad-core AMD Phenom machine. We
measured overheads associated with real-time scheduling and
experimentally compared the scheduling algorithms previ-
ously listed with their theoretical results.

6.1 NG-GUA and G-GUA
NG-GUA and G-GUA are multiprocessor polynomial-time

heuristic scheduling algorithms that allow tasks to be sub-
ject to run-time uncertainties, overloads and dependencies,
and yield optimal total utility in underload and best-effort
timeliness behavior based on TUF scheduling otherwise. NG-
GUA defaults to G-EDF during under-loads while G-GUA
does not. G-EDF and NG-GUA should therefore meet all
deadlines until m/2, while G-GUA may miss deadlines ear-
lier. Once G-GUA and NG-GUA begin missing deadlines,
both should be free from the ”domino effect” commonly seen

Figure 4: Task mapping for global scheduling algo-
rithms in ChronOS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,4C,NL,RU

G-GUA
NG-GUA

G-EDF
G-NP-EDF

G-FIFO

Figure 5: Deadline satisfaction ratio (DSR)

 0

 5

 10

 15

 20

 25

5 10 20

S
ch

ed
ul

in
g

ov
er

he
ad

 (
m

ic
ro

se
co

nd
s)

Number of tasks

G-NP-EDF/100%
G-EDF/100%
G-GUA/100%

NG-GUA/100%
G-NP-EDF/800%

G-EDF/800%
G-GUA/800%

NG-GUA/800%

Figure 6: ChronOS scheduling overheads

in EDF-type algorithms. For brevity, the details of the algo-
rithms have been omitted. They are given by Garyali in [7].

6.2 Scheduling Results
We create a real-time test application using ChronOS APIs

which periodically fires real-time tasks with specified time-
constraints. For each task, we use a burn_cpu(wcet) func-
tion, which takes the wcet as an input and burns processor
cycles for that amount of time. To simplify experimenta-
tion, we use periodic tasks with deadlines equal to periods.
Fig. 5 shows deadline satisfaction ratio (DSR) results for
several best-effort and non-best-effort scheduling algorithms.
The results shown are for a 12-task taskset with periods dis-
tributed between 40ms and 2s, and randomly generated util-
ities and execution times. We observe that the results are
consistent with the theoretical behavior of the algorithms;
G-EDF and G-NP-EDF demonstrate the ”domino effect”
when overloaded, while the TUF based algorithms do not.
G-EDF and NG-GUA also exhibit identical performance in
underloads, as expected. More extensive scheduling results
are presented by Garyali in [7].

6.3 Overheads
To measure the overhead incurred by our scheduling frame-

work over SCHED_FIFO, we measured four sources of over-
head: context switching overhead, scheduling overhead, in-
scheduler migration overhead, and the overhead of our real-
time specific system calls. All times measured, both in the
kernel and in the userspace, were taken by reading the x86
architecture’s Time Stamp Counter (TSC) before and after
the event measured. All results are from at least 1000 runs.

Context switching overhead describes the cost of the Linux
kernel’s context_switch() function, which performs the ac-
tual switching of the old and new tasks. The function is also

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 12 20

N
um

be
r

of
 m

ig
ra

tio
ns

Number of tasks

FIFO
G-NP-EDF

G-EDF
G-GUA

NG-GUA

Figure 7: Number of migrations

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Avg Min Max

O
ve

rh
ea

d
(n

s)

begin rt seg
end rt seg

gettid
getcwd

sched setscheduler

Figure 8: ChronOS system call overheads

called by the Linux scheduler and is therefore not specific
to ChronOS, but due to the fully preemptive nature of cer-
tain scheduling algorithms (such as NG-GUA, G-GUA), con-
text switches are much more frequent under these algorithms
than under SCHED_FIFO. Also, a context switch under such
algorithms is more expensive, since the task that is being
switched in often has been preempted from another proces-
sor, incurring cache misses. The average context switching
overhead under SCHED_FIFO was 3.7µs with a standard devi-
ation of 1.4µs. Under G-GUA, the average time was 12.7µs
with a standard deviation of 2.0µs.

Scheduling overheads represent the time required to actu-
ally run the scheduling code for a specific algorithm. Schedul-
ing overheads are shown for various algorithms, numbers
of tasks, and utilizations in Fig. 6. Scheduling overheads
are expectedly high at low load for the more complex GUA
family of algorithms, due to their more complex task selec-
tion scheme. Likewise, at high loads non-abortive algorithms
such as G-EDF display a higher overhead, since they backlog
tasks, rather than aborting and removing them.

In-scheduler migration reflects the time required by the
kernel scheduler to pull a specific task from a remote run-
queue to the local run-queue. This is largely dominated
by the time required to lock the necessary spinlocks. We
found that that average in-kernel task migration overhead
in ChronOS is 8µs, with a standard deviation of 3µs. We
also recorded the number of such migrations performed by
each algorithm on various task-sets. These are displayed in
Fig. 7. As expected, G-EDF and NG-GUA (which defaults
to G-EDF) performs a significantly higher number of mi-
grations than G-NP-EDF, which is similar to SCHED_FIFO.
G-GUA performs by far the most migrations on a given task-
set. Therefore, while on a per-migration basis the cost is
constant, G-GUA suffers much higher migration overhead.

We recorded the overheads for two system calls used by
our real-time tasks to begin and end real-time scheduling
segments. In Fig. 8 they are compared to the time required
by three standard Linux system calls, gettid(), getcwd(),

and sched_setscheduler(). Since gettid() simply returns
a value from the task descriptor of the current task, it is a
reasonable estimate of system call overhead. As shown, our
system calls are comparatively long. The majority of this
time is required to perform a call to the Linux scheduler.

7. CONCLUSIONS
We have presented ChronOS, a Linux/PREEMPT_RT OS

that supports CMP real-time scheduling including best-effort
scheduling. At its core, ChronOS demonstrates that the
best-effort timeliness notion, pioneered by the Alpha kernel,
can be supported on Linux/PREEMPT_RT CMP platforms.

Our future work will focus on understanding and increas-
ing the scalability of global schedulers in ChronOS on high
core-count systems. This paper is based on ChronOS Beta
2.4 and Linux kernel 2.6.31.14. ChronOS is open-sourced
under GPL and is publicly available through a website, with-
held here to respect the conference anonymity rules.

c©ACM, 2011. This is the author’s version of the work. It
is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version will appear in
ACM Design Automation (DAC 2011), June 2011

8. REFERENCES
[1] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro,

A. Soppelsa, and C. Taliercio. Performance
Comparison of VxWorks, Linux, RTAI, and Xenomai
in a Hard Real-Time Application. Nuclear Science,
IEEE Transactions on, 55(1):435 –439, feb. 2008.

[2] S. Baruah and N. Fisher. The partitioned
multiprocessor scheduling of sporadic task systems. In
RTSS ’05: Proceedings of the 26th IEEE International
Real-Time Systems Symposium, pages 321–329, 2005.

[3] B. Brandenburg, A. Block, J. Calandrino, U. Devi,
H. Leon-tyev, and J. Anderson. LITMUSRT : A Status
Report. In RTLWS ’07, 2007.

[4] J. M. Calandrino and J. H. Anderson. On the design
and implementation of a cache-aware multicore
real-time scheduler. In ECRTS ’09, pages 194–204,
2009.

[5] R. Clark, E. D. Jensen, A. Kanevsky, J. Maurer,
P. Wallace, T. Wheeler, Y. Zhang, D. Wells,
T. Lawrence, and P. Hurley. An Adaptive, Distributed
Airborne Tracking System (“Process the Right Tracks
at the Right Time”). In In IEEE WPDRTS, volume
1586 of LNCS, pages 353–362. Springer-Verlag, 1999.

[6] R. K. Clark. Scheduling Dependent Real-Time
Activities. PhD thesis, CMU, 1990. CMU-CS-90-155.

[7] P. Garyali. On best-effort utility accrual real-time
scheduling on multiprocessors. Master’s thesis,
Virginia Tech, 2010.
http://scholar.lib.vt.edu/theses/available/etd-
07222010-114202/.

[8] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware
scheduling and analysis for multicores. In EMSOFT
’09, pages 245–254, 2009.

[9] E. Jensen and J. Northcutt. Alpha: A
Non-proprietary OS for Large, Complex, Distributed
Real-Time Systems. In Experimental Distributed
Systems, 1990. Proceedings., IEEE Workshop on,
pages 35–41, 11-12 1990.

[10] D. S. Johnson. Fast algorithms for bin packing. J.
Comput. Syst. Sci., 8(3):272–314, 1974.

[11] Y.-C. Wang and K.-J. Lin. Implementing a general
real-time scheduling framework in the red-linux
real-time kernel. In RTSS ’99, page 246, 1999.

