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We present an experimental analysis of the scalability of 13 multicore real-time scheduling algorithms on
a 48-core AMD platform. The algorithms include G-EDF, P-EDF, C-EDF, and G-NP-EDF, besides others.
Comparisons are made based on schedulability and tardiness. The algorithms are implemented in a real-
time Linux kernel we create called ChronOS. ChronOS extends the Linux kernel’s PREEMPT_RT patch with a
flexible, scalable real-time scheduling framework. Our study shows that it is possible to implement global
fixed and dynamic priority real-time scheduling algorithms which will scale to large-scale multicore plat-
forms. Interestingly, and in contrast to the conclusions of prior research, our results reveal that some global
scheduling algorithms (e.g. G-NP-EDF) are scalable on 48-core machines. In our implementation, scalabil-
ity is restricted by lock contention over the global schedule and the cost of inter-processor communication,
rather than the global task queue implementation. We show that algorithms implemented with scalability
as a first-order goal are able to provide real-time guarantees on our 48-core platform.
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1. INTRODUCTION

The current trend among chip manufacturers is to improve performance by increasing
the core count of processors, rather than increasing clock rates [Asanovic et al. 2009].
This is largely motivated by heat and power constraints [Monchiero 2006]. Currently,
dual and quad-core chips are the standard. AMD is already producing a 12-core pro-
cessor, which we use in a four-processor configuration in this study, while Intel has
demonstrated working 48 and 80-core chips [Mattson 2010].

The increased presence of multicore and multiprocessor architectures has generated
an increased interest in multiprocessor real-time task scheduling. While a significant
amount of effort has been devoted to this field by the academic research community,
the focus of this research has largely been on theoretical issues [Carpenter et al. 2004].
More specifically, existing research has largely concentrated on determining efficient
schedulability tests for scheduling algorithms (i.e., task utilization conditions under
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which all task deadlines can be met), or on the development of new algorithms which
can provide tighter schedulable utilization upper bounds or simpler tests.

While algorithmic research is both necessary for and beneficial to the advancement
of multiprocessor real-time scheduling, it cannot solve every problem. It is not clear
how system overheads (and other second order effects) affect the scalability of existing
schedulers, in particular on large core count platforms. This is difficult to understand
analytically and is therefore correctly scoped out of research that focuses on devising
schedulability tests or producing algorithms with improved schedulability. Since task
scheduling is generally implemented in the operating system kernel, and a variety of
other kernel-level components have previously been shown to scale poorly on large-
scale multiprocessor systems, it is doubtful that task scheduling will be immune to
the detrimental effects of scaling [Boyd-Wickizer et al. 2010]. Before such algorithms
can be deployed in production environment on large-scale multicore platforms, these
effects must be understood.

So far, only two studies have approached this issue, and only one of them has specifi-
cally focused on it. Calandrino and Anderson performed analysis of the performance of
G-EDF and P-EDF on a simulated 64-core MIPS platform and proposed Clustered EDF
as a solution [Calandrino et al. 2007]. Brandenburg et. al. experimentally measured
the scheduling overheads of a range of tasksets on a 32-core Sun Niagara platform and
then determined schedulability using offline schedulability tests [Brandenburg et al.
2008]. However, neither of these efforts actually scheduled a large number of tasksets
on a running kernel scheduler, and neither explored RMS or FIFO algorithms, which
are commonly used.

Based on these observations, we performed this experimental study of the scala-
bility of thirteen real-time scheduling algorithms on a 48-core AMD “Magny-Cours”
platform. This platform uses four physical processors, each having 12 cores. On each
of these processors, there are two 6MB L3 caches, each shared between six of the cores.
Since this is an x86 platform, it is quite distinct from the RISC platforms used in the
two previous studies.

Additionally, we performed the same measurements on a machine with a pair of
8-core AMD Opteron 6128 processors, for a total of 16 cores.

Our focus in this study is primarily on the scalability of various classes of multicore
real-time scheduling algorithms. To measure this, we scheduled 288,000 tasksets for
each scheduling algorithm, varying in processor utilization between 1 and 48 (1 and 16
for the 16-core machine). For each task set, we measured the schedulability and task
tardiness using our scheduling test application. Additionally, we measured various sys-
tem overheads in order to help us better understand the performance characteristics
of our system and scheduling algorithms.

We performed our experiments using the ChronOS Linux kernel which we previ-
ously developed [Dellinger et al. 2011]. ChronOS is an extension of the Linux kernel’s
PREEMPT RT patch [Rostedt and Hart 2007]. The PREEMPT_RT patch enhances the real-
time capabilities of the standard Linux kernel. ChronOS provides a framework for
flexible multicore real-time scheduling, and supports a wide range of algorithms. A
brief overview of its structure is given later. It is important to note that the majority
of our conclusions are both implementation and platform dependent, and therefore are
only valid in the context of ChronOS and the AMD platform used. We do make several
conclusions which are likely generalizable to other systems, but admit that there are
likely exceptions.

1.1. Multicore Real-Time Scheduling Algorithms

The most widely researched class of multiprocessor real-time scheduling algorithms
are global scheduling algorithms. In global scheduling algorithms, all tasks are placed
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in a single globally accessible queue, and scheduling decisions are made for the en-
tire system based on the contents of this queue. Tasks are allowed to migrate freely
between all processors in the system. One advantage of this approach is that it is
capable of providing optimal schedules on a multiprocessor. Another advantage is
that tasks can be added to the system at run-time without difficulty. However, since
tasks can migrate freely, the system incurs overhead due to migration costs and
cache misses [Bertogna et al. 2009]. In our study, we consider five algorithms in
this class: Global EDF (G-EDF), Global RMS (G-RMS), Global Non-Preemptive EDF
(G-NP-EDF), Global Multiprocessor Utility Accrual (gMUA) [Cho 2006], Non-greedy
Global Utility Accrual (NG-GUA) [Garyali 2010], Greedy Global Utility Accrual (G-
GUA) [Garyali 2010], Global FIFO (G-FIFO) and SCHED_FIFO, the default real-time
scheduling policy in the Linux kernel. SCHED_FIFO is not a typical global scheduling
algorithm, since tasks do not reside in a single global queue, but we consider it one
since its goal is to provide strict system-wide real-time priority-based scheduling, and
since tasks are allowed to migrate freely.

Tasks can also be assigned to processors offline, and then uniprocessor scheduling
can be performed on each processor. This approach is known as partitioning. Partition-
ing has several advantages over global scheduling; first, since all tasks are allocated to
processors, the global scheduling problem becomes a set of local uniprocessor schedul-
ing problems. Uniprocessor scheduling has been extensively studied and optimal and
efficient algorithms are well known (e.g. EDF, RMS). Second, because the tasks are not
allowed to migrate, the system incurs no overhead due to task migrations and cache
misses. However, because taskset partitioning is analogous to the bin-packing prob-
lem, it is NP-hard in the strong sense [Baruah and Fisher 2005]. Because of this, par-
titioning cannot provide optimal scheduling on multiprocessors. Additionally, if tasks
are added to the system at run-time, it may be necessary to re-partition the entire
system. The four algorithms studied in this class are Partitioned EDF (P-EDF), Par-
titioned RMS (P-RMS), Partitioned LBESA (P-LBESA) [Northcutt 1987], and Parti-
tioned DASA-ND (P-DASA-ND) [Clark 1990].

A variety of schemes have been studied which utilize elements of both partition-
ing and global scheduling. The most common of these is known as clustered or semi-
partitioned scheduling [Bastoni et al. 2011]. In this scheme, tasks are first partitioned
onto sets of processors, and global scheduling is then run within each cluster. This al-
lows for some of the benefits of global scheduling, while minimizing the penalties for
task migrations. In our study, we consider Clustered EDF (C-EDF) [Calandrino et al.
20071, which resides in this category.

2. CHRONOS LINUX

We use ChronOS Linux as the platform for this study. ChronOS has previously been
presented in [Dellinger et al. 2011] and improvements have been made to make the
platform more scalable. These improvements have been summarized in [Dellinger
2011]. A general overview is presented here to familiarize the reader with the basic
concepts utilized.

ChronOS is extended from the Linux kernel’s PREEMPT_RT patch, which enhances the
real-time capabilities of the Linux kernel by increasing the preemptibility of the ker-
nel. This is done by making critical sections preemptible, placing most interrupt han-
dlers in process context, and implementing priority inheritance for in-kernel locking
primitives. This results in significantly lower worst-case latencies [Dellinger 2011].

ChronOS supports the three kinds of scheduling previously described — global, clus-
tered, and partitioned. In ChronOS, global scheduling is implemented on top of what
we term “architectures”, which represent sets of function pointers and data structures
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that manage the global queue and handle executing tasks selected for scheduling. In
ChronOS, we have two primary architectures — concurrent and stop-the-world.

The concurrent architecture is so named because it allows applications to execute
concurrently with the scheduler. Each processor makes a scheduling decision for itself
based on the global queue, but does not interrupt the other processors unless it needs
to migrate a task. In ChronOS, this architecture is used for simple algorithms, non-
preemptive algorithms, and online partitioning systems. In this study, G-FIFO and
G-NP-EDF are implemented on this architecture.

The stop-the-world architecture schedules in a more traditional way. It stops every
processor in the system at each scheduling event, creates a schedule for all processors,
and then distributes this new schedule to all processors. This allows for the implemen-
tation of significantly more complex algorithms. In this study, G-RMS, G-EDF, and
C-EDF are all build on this architecture. C-EDF is performed by performing G-EDF in
several distinct scheduling domains.

Because we are studying scalability, it is important to present a few details of the un-
derlying implementations. For both architectures, the global queue is implemented as
a standard Linux doubly-linked list. We are aware that this implementation has been
shown to be less than ideal in [Brandenburg et al. 2008], but our measurements show
that the implementation of this list is not a bottleneck on our system. This is likely due
to the difference in architecture between the platform in [Brandenburg et al. 2008] and
ours. Second, for both architectures, this linked list is protected by a single Linux spin-
lock, which is an implementation of the ticket lock algorithm. Since the global queue
is the only globally accessed data structure in the concurrent architecture, this lock
is the only point of contention. For the stop-the-world architecture, there is a second
shared data structure — the global schedule. This must be accessed by every proces-
sor almost every scheduling event. There are a few optimizations made to decrease
the contention on this lock, but they are omitted here given the space constraints. Due
to the high contention, this lock is implemented as an MCS lock [Mellor-crummey and
Scott 1991]. This drastically improves system-level performance over a Linux spinlock.

3. EXPERIMENTAL EVALUATION

To evaluate the performance of ChronOS, we conducted experiments on a 48-core AMD
Opteron machine with a clock speed of 1.7 GHz. We measure the schedulability and
mean-max tardiness of a large number of tasksets. Overheads are then measured to
gain understanding into observed behaviors.

3.1. Methodology

None of the algorithms described except the forms of RMS assume any specific task ar-
rival model. Tasks may arrive at any time in any pattern. However, to simplify exper-
imentation and allow comparison between all algorithms, we use only periodic tasks
for our experiments. This is also advantageous because computing theoretical bounds
for many of the algorithms is either difficult or impossible when aperiodic tasks are
allowed into the system. All deadlines are made equal to periods for the same reasons.

In order to measure the scheduling behavior of the system, we designed a test ap-
plication which takes as input a taskset file, scheduling algorithm, and experiment
execution time. This application makes use of the ChronOS APIs to schedule its tasks
and supply their timing constraints to the kernel. The taskset file provides a period,
WCET, and processor affinity for each task. Our application uses the “thread-per-task”
model, which creates a single OS thread per task in the system. Each task is run
though a number of jobs equal to the ceiling of experiment’s runtime divided by the pe-
riod of the task. Each job of the task burns the processor for the task’s WCET and then
the thread sleeps until the beginning of the next job. The processor is burned by incre-
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menting a counter a precomputed number of times. The number of times this counter
must be incremented to burn 1us of time is called the system slope. This means that
our workloads are almost completely processor-intensive.

3.2. Baker Tasksets

We use a variation of the method described by Baker to create a set of tasksets which
evaluate the scheduler’s performance under a variety of circumstances [Baker 2005a].
In this method, we generate a large number of tasks according to a set of task weight-
ings and statistical distributions. In this variation, which was first described in [Bran-
denburg et al. 2008], we use three different weightings of two statistical distributions
— a uniform and a bimodal distribution. This gives us a total of six taskset distribu-
tions. As was done in [Brandenburg et al. 2008], we distribute all periods uniformly
between 10ms and 100ms. Tasks in the three uniform distributions were distributed
over [0.001, 0.1], [0.1, 0.4], and [0.5, 0.9]. Tasks in the three bimodal distributions were
distributed uniformly over [0.001, 0.5) or [0.5, 0.9] with probabilities of 8/9 and 1/9, 6/9
and 3/9, and 4/9 and 5/9. These six distributions are referred to as light uniform (BLU),
medium uniform (BMU), heavy uniform (BHU), light bimodal (BLB), medium bimodal
(BMB), and heavy bimodal (BHB).

Tasksets were generated for each integer utilization point on the interval (1, 48).
For each taskset, tasks were added until the utilization demand exceeded the desired
utilization, and then the last task was removed. 1000 tasksets were generated for each
utilization point in each distribution, resulting in a final count of 288,000 tasksets.

For each algorithm, a total of 1,031,707,071 jobs of 38,779,473 tasks were scheduled.
This is by no means the largest sample size ever used to analyze real-time schedulers;
[Brandenburg and Anderson 2009] and [Brandenburg et al. 2008] present results us-
ing 5.5 and 8.5 million tasksets. However, both of these works rely on using a small
number of tasksets to characterize the overheads in a system, and then perform of-
fline schedulability tests on the full set of tasksets which have been inflated with these
overheads. In contrast, we schedule the experimental workload generated and mea-
sure schedulability and tardiness. Our experiment is, to our knowledge, the largest
sample size ever experimentally tested.

3.3. Partitioning and Clustering

Tasksets were partitioned offline using one of two algorithms: a first fit method similar
to the method devised by Baruah and Fisher [Baruah and Fisher 2005], and a simple
least-utilization algorithm. The first-fit algorithm was used for P-EDF. It is based on
sufficient EDF schedulability criteria for sporadic tasks. Since we are only using peri-
odic tasks, we can safely ignore the request-bound function constraint of the algorithm,
and use only the utilization constraint. Tasks are assigned to the first processor with a
utilization low enough that the sum of the utilizations of all tasks previously assigned
to the processor and the current task is less than 1.

We make two changes to the original algorithm. First, some tasksets which are fea-
sible under algorithms like PFair [Srinivasan and Anderson 2006] and LLREF [Cho
et al. 2006] cannot be partitioned by the algorithm in [Baruah and Fisher 2005]. For
example, consider a dual-core machine and a taskset with three tasks, each having a
utilization of 0.6. As the tasks have a cumulative utilization of 1.8, the taskset is feasi-
ble under both PFair and LLREF, but cannot be partitioned by Baruah’s algorithm. We
commonly see such cases in our heavy-uniform distributions. In such cases, we employ
a best-effort partitioning approach. If a task does not fit on any processor, the task is
assigned to the processor with the lowest total utilization.

Second, Baruah and Fisher assume that the algorithm is applied to the tasks in non-
decreasing deadline order. However, since periods are equal to deadlines, for our lighter
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distributions, this ordering often results in a single processor having a large number
of tasks with short periods, while another processor has a large number of tasks with
large periods. To deal with this, we assign tasks in order from highest utilization to
lowest utilization (i.e. U; > U;41).

Since task execution times are not inflated to deal with system overheads, assigning
a load of 1 to a given processor would place it slightly into overload. To deal with this,
we replace the fit bound of 1 with 0.95, leaving a small amount of room for overhead.

The least-utilization algorithm was used for P-RMS. Under this algorithm, tasks
were considered in decreasing utilization order, and each task was assigned to the core
with the least total utilization. This guarantees that no core will receive a second task
until a task has been assigned to each core, and attempts to evenly distribute the load
among all cores.

Clustering is handled by partitioning the taskset, and then grouping all tasks as-
signed to a set of cores together. For example, in a system with two quad-core proces-
sors and two clusters, we partition the taskset and then place all tasks assigned to
cores 0 through 3 on cluster A and all tasks assigned to cores 4 through 7 on cluster
B. Clusters are selected to correspond to physical processors, creating clusters of 12
cores. Since the first-fit algorithm tends to group all tasks on small set of cores, we use
the least-utilization partitioning algorithm for creating clustered tasksets.

3.4. Scheduling Results

Hard real-time schedulability results for the 48-core system are shown in Figure 1. We
measured the percentage of the tasksets executed that were successfully scheduled as
we varied the utilization from 1 to 48. The first column shows the three weightings in
the uniform distributions, while the second column shows the three weightings in the
bimodal distributions.

There are several behaviors worth noting in our results. First, P-EDF outperforms
all other algorithms except in the heavy uniform case, where both of the partitioned
algorithms perform the worst. This occurs because partitioning each taskset into fea-
sible sub-tasksets becomes impossible for this distribution due to the high weight of
many of the tasks, meaning that some of the tasks must be migrated in any feasible
schedule. This is a well-known problem with partitioning [Baker 2005b]. As expected,
P-RMS does not perform as well as P-EDF. However, ignoring the heavy uniform case,
both perform well with respect to the other algorithms.

Second, C-EDF performs well in all cases. In no case does it fail to schedule all
tasksets below a load of 26. It provides the best performance in the heavy uniform
case, and the second best performance behind P-EDF in the heavy bimodal and light
uniform cases.

Third, G-NP-EDF routinely performs reasonably well, never failing to schedule all
tasksets below a load of 18. Its theoretical performance is not as strong as C-EDF,
P-EDF, or G-EDF, and as expected of a non-preemptive algorithm, its performance is
weakest on the bimodal distributions. Based on its performance in the light uniform
case, which is the most demanding from the perspective of overheads, we conclude that
it scales well.

Fourth, G-FIFO outperforms SCHED_FIFO in every case, even though SCHED_FIFO ap-
proximates G-FIFO. This is a highly meaningful result, because SCHED_FIFO mostly
relies on per-CPU data structures to prevent inter-processor memory contention and
cache-thrashing. This approach should, in theory, provide a higher degree of scalabil-
ity.

Last, G-EDF and G-RMS perform poorly compared to the other algorithms in the
BHU, BHB, BMB, and BLB cases. However, in the light and medium uniform
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Fig. 3. Hard real-time schedulability results for TUF schedulers for (a) heavy uniform, (b) heavy bimodal,

(c) medium uniform, (d) medium bimodal, (e) light uniform, and (f) light bimodal per-task weight distribu-
tions.
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distributions, the performance of both algorithms improves significantly over that of G-
FIFO. The performance of G-EDF in the medium uniform case is above its theoretical
bound as computed by the GFB method [Goossens et al. 2003]. In all cases, G-EDF
outperforms G-RMS, which is to be expected.

Mean-maximum tardiness (MMT) results are presented in Figure 2. MMT was com-
puted by recording the maximum tardiness in each taskset and taking the average
across all tasksets. Bounded tardiness is often considered a sufficient test for soft real-
time schedulability. Rather than comparing our results to theoretically computed tar-
diness bounds, which would take significant effort to accurately derive for our plat-
form, we look at each algorithm to determine the point where tardiness begins to rise
rapidly. For the RMS-based algorithms, this value is quite distinct due to their fixed-
priority nature, while for the other algorithms it is not so distinct. Since G-FIFO (and
therefore SCHED_FIF0), G-EDF, G-NP-EDF, C-EDF, and P-EDF should all bound tar-
diness in underload, this value also tells us approximately when the system enters
overload due to system overheads.

We observe several important trends in these results. First, G-NP-EDF, C-EDF, and
P-EDF consistently provide the lowest tardiness in the system. The only exception
to this is the heavy uniform case, where C-EDF and P-EDF enter overload earlier
than several of the global algorithms due to the partitioning difficulties with heavy
tasksets. Second, as expected, the RMS-based algorithms show high tardiness, since
one task in the system receives interference from all other tasks. Third, both G-FIFO
and SCHED_FIFO provide low tardiness until the system enters overload due to schedul-
ing overheads, at which point the tardiness of both rapidly increases. Once this hap-
pens, G-FIFO consistently provides lower tardiness than SCHED_FIFO. As expected, G-
EDF bounds tardiness up to a point, and then in most cases shows a jump to around
300ms followed by a linear increase. However, this jump occurs significantly lower than
48 for all cases, implying that G-EDF is not scaling as well as G-NP-EDF or G-FIFO.

Table I. Load at which tardiness-bounding algorithms enter overload

Algorithm | BHB BHU BMB BMU BLB BLU
SCHED_FIFO 44 45 44 43 43 36

G-FIFO 44 45 44 44 44 40
G-EDF 36 37 35 33 33 24
G-NP-EDF 46 46 46 46 46 42
C-EDF 39 39 44 43 44 42
P-EDF 39 31 44 43 44 46

Table I shows the values at which each of the algorithms which bound tardiness
in underloads enter overload. From this, we can see two things. First, the scheduling
algorithms built on the concurrent architecture (G-FIFO and G-NP-EDF) scale rea-
sonably well. Second, G-EDF’s scaling is almost directly proportional to the number of
tasks. Third, as expected, partitioned algorithms have difficulties with heavy tasksets,
and perform well with lighter ones.

3.4.1. Scheduling Results on 16 cores. We also conducted these experiments on a system
with 16-cores. The results are shown in Appendix A in Figures 9 to 11.

Most algorithms perform as expected; G-RMS, G-EDF, P-EDF, and P-RMS all
achieve their theoretical bounds bounds for all cases. C-EDF outperforms G-EDF in
all cases, and both outperform all other global algorithms for the BHB, BHU, BMB,
and BLB task sets. G-FIFO and G-NP-HVDF show widely varying performance, and
are only able to meet all deadlines consistently under low loads. P-EDF shows per-
formance which keeping with the difficulties of the bin-packing problem involved; the
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load at which it is able to successfully schedule all tasksets is proportional to the av-
erage task weight, and ranges from 10 for the BHU case to 15 for the BLU case. Also,
as expected, P-EDF performs much better under the bimodal cases than the global
deadline-based algorithms, but worse for the BHU case. For the BHB, BMB, and BLLB
cases P-EDF schedules all tasksets up to loads of 12, 13, and 14 respectively, while G-
EDF only manages 8, 8, and 7. However, G-EDF is able to schedule all tasksets up to a
load of 11 for the BHU case, compared to 10 for P-EDF. These difference are not due to
scaling problems, but rather are the expected behaviors of the algorithms. G-NP-EDF
demonstrates high but unpredictable performance; it is significantly outperformed by
G-EDF, C-EDF, and G-RMS the BHB, BHU, and BMB cases. However, it outperforms
G-RMS and G-EDF at some loads in the BLB case, outperforms both for all loads and
C-EDF for some loads in the BMU case, and outperforms all three for the BLU case.

3.4.2. TUF Scheduling Results. In addition to the more traditional global and parti-
tioned schedulers, we studied time/utility function-based schedulers as well. The stud-
ied schedulers included gMUA, G-GUA, NG-GUA, P-DASA-ND, and P-LBESA. As be-
fore, the 48-core schedulability plots are included inline in Figure 3, while the 16-core
plots are shown in Appendix A.

On the 16-core platform, NG-GUA and gMUA provide similar performance. How-
ever, they suffer significant performance degradation due to their high overheads on
large systems, and only perform near G-EDF on heavier tasksets. Under the BLU
tasksets, they suffer a catastrophic failure, and meet deadlines only up to around half
the load of G-EDF. Furthermore, gMUA consistently outperforms NG-GUA by a small
margin; in most cases, it appears to be able to decay around a load of 2 later than NG-
GUA. This is consistent with the effects of the overhead difference between the two
algorithms.

None of the global utility accrual algorithms are able to provide full schedulability at
a load greater than 19 for the 48-core experiments. For the BLU case, none can provide
it at a load higher than 7. In this case, NG-GUA and gMUA miss their theoretical
bound by over 500%. The large number of tasks in the BLU case also affects P-LBESA
and P-DASA-ND, as neither is able to provide full schedulability for a load over 19. On
the surface, this result is surprising, because the average task weight is no larger than
that of the BLU case for the 16-core platform, and so the average number of tasks
per core should be the same. However, since a first-fit partition is used, it is likely
that a large number tasks allowed many extremely lightweight tasks to be assigned
to the first several cores in some cases. This degradation must be attributed to the
overhead of the algorithms, since no such effect occurs under P-EDF, which uses the
same tasksets. P-DASA-ND fails to schedule tasksets at a lower load than P-LBESA
because P-LBESA takes the optimistic approach of placing all tasks in the schedule,
and then removing them until the schedule is feasible while P-DASA-ND takes the
pessimistic approach of adding tasks to an empty schedule until it becomes infeasible.
When in underload, there is always a feasible schedule, and so P-LBESA’s approach
will result in significantly lower overheads.

3.5. Overheads

To thoroughly understand these results, we must understand various sources of over-
head in the system. To accomplish this, we measure a variety of overheads to deter-
mine their effects.

All of our measurements are taken by using the x86 rdtsc instruction. This instruc-
tion reads the processor’s time-stamp counter, and is a common feature on all x86
processors manufactured in the last decade. When paired with an mfence instruction
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Fig. 4. Scheduling overheads. (Note that G-FIFO and G-NP-EDF are on top of each other, as are P-RMS
and P-EDF.)

to prevent re-ordering, it provides single-cycle resolution and allows for the fine-grain
measurements we need.

3.5.1. Scheduling Overheads. The most obvious source of overhead in real-time schedul-
ing is the time cost of performing the scheduling itself. The scheduler must be invoked
at every scheduling event, so its cost is of prime importance.

To measure scheduling overhead, we instrument the scheduler to record a times-
tamp before and after our scheduling algorithm is called. Additionally, we record the
number of tasks in the scheduler. For each global scheduler, we graph the scheduling
overhead with respect to the number of tasks. To generate the data, we ran one full-
load taskset for each taskset distribution. On average, each data point is the result
of 158 readings. The scheduling overheads are shown in Figure 4. Note that for par-
titioned algorithms, we only measure up to 16 tasks because the partitioning means
that no core will schedule as many tasks as with global scheduling.

The results make several things clear. First, G-FIFO, G-NP-EDF, P-EDF, and P-
RMS all schedule in O(1) time, as expected. G-EDF, C-EDF, and G-RMS all schedule
in O(m) time, and their performance when there are less than m tasks in the system
is linear. This is also in line with their expected performance. Both G-EDF and G-RMS
exhibit high scheduling overheads due to the cost of accessing m task descriptors, most
of which are not cache-hot. This overhead drastically decreases with C-EDF, which
executes the same code as G-EDF, but does so on only a quarter of the processors, and
accesses only local task descriptors.

3.5.2. Migration Overheads. Another source of system overhead is due to cache misses
after a task is preempted or migrated. When one task is preempted and another task
begins execution, some of the first task’s data may be removed from the processor’s
cache. When the first task resumes execution, accessing this data will incur a cache
miss. Similarly, when a task is migrated between two processors, it is likely that its
data is not cache-hot on the task’s new processor. Furthermore, some of the data will
likely be cache-hot on the tasks’s previous processor, which means that if the task
changes data, a cache-invalidate message must be sent to the previous processor. Ad-

ACM Journal of Experimental Algorithmics, Vol. 17, No. 1, Article 1, Publication date: August 2011.



An Experimental Evaluation of Real-Time Scheduling Algorithms on Multicore Platforms 1:13

ditionally, if the processors between which the task is migrated do not share memory,
fetching the data into the second processor’s cache may require additional overhead.

Since our test application performs most of its execution in a simple burn loop, its
working set is quite small, and therefore it cannot be instrumented to capture these
overheads. Instead, we create a separate test to measure them. This test works as
follows; first, a working set of some i pages is allocated. The thread running the test
is then locked to a core, and the buffer is initialized. The thread then writes data
into j evenly spaced addresses within each page of the buffer, and records the time
it took to perform all the writes. This is done 1000 times. The thread then initializes
the buffer from some core P4, and then migrates itself to some other core Pg, so that
its data is cache-cold. Once executing on Pg, the thread then performs the same set
of writes as before, and again measures the time taken. This is also done 1000 times.
The difference between the times is the cost of the cache misses. Measurements are
performed for working sets of 1, 2, 4, 8, 16, 32, and 64 pages.

Figure 5 shows the cost of four different migration paths. First, we measure the cost
of migrating between two cores which share L3 cache, but not L2 or L1. Second, on
our platform, each processor shares memory, but has two separate L3 caches, each
for half of the processor’s cores. Therefore, we test migrating between cores on the
same processor which do not share L3 cache. Third, we measure the cost to migrate
to a different processor, thereby loosing direct access to memory. The third and fourth
paths are migrating from processor 0 to processor 1 and from processor 0 to processor
2. Migrations between processors 0 and 3 are not shown, because they were measured
to have the same overhead as migrating between 0 and 1. On our system, a page is
4096 bytes, and a cache line is 64 bytes. Therefore, the maximum number of writes per
page we can use without duplicating writes on a given cache line is 64. Additionally,
AMD implements sequential cache line prefetching. In order to avoid inaccuracies from
this, we measure with 4 and 16 writes-per-page, or every 4 and 16 cache lines. All of
our tests use CPU 0 as the first CPU.

From these results, we can clearly see several things. First, there is a measurable
difference in the various migration paths. In fact, the overhead to migrate a task be-
tween two physically distinct processors is around four times the cost to migrate within
an L3. While this does not significantly impact our scheduling results, it could be a
significant performance hit to a highly memory-intensive application. Second, we see
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that, as expected, memory access times are significantly shorter when accessing the
calling processor’s memory. Calling processor 1’s memory from processor 2 or 4 incurs
around a 15% overhead, while accessing processor 1’s memory from processor 3 dou-
bled the cost. We ran several further tests, and found that this effect also happened
when fetching between processors 2 and 4.

The second aspect of task migration which needs to be measured is the cost of per-
forming the actual migration in the scheduler. Table II shows the average cost of mi-
grations for each scheduling architecture. At least 4000 data points were collected for
each measurement. Since the same migration function is used by all the schedulers,
migration costs are nearly identical under all algorithms which share an architecture.

Table II. Migration cost for both scheduling archi-

tectures(ticks)
Platform | Concurrent Stop-The-World
Average 4516 14866
St. Dev. 1423 8401
Worst 48459 38867
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The difference between the two architectures is mainly due to lock contention for
the per-core runqueue. When core A wants to pull a task from core B, it must first lock
B’s runqueue. If B is currently in the scheduler, it will have its own runqueue locked, so
A must wait until B finishes scheduling. In the stop-the-world architecture, it is likely
that the core being pulled from is currently executing in the scheduler, so a core must
often block. However, the number of migrations is minimized, so it is unlikely that
migrations will interfere with each other. In the concurrent architecture, it is unlikely
that the target core is in the scheduler, but it is also possible that several migrations
are interfering with each other. Hence, the average time is lower for the concurrent
architecture, but the worst time is significantly higher.

The third factor needed to understand migration patterns is the number of migra-
tions each scheduling algorithm performs. These numbers are shown in Figure 6.

3.5.3. Context Switch Overheads. This cache miss overhead manifests itself not only in
user space task execution times and migration overheads, but also in the time required
to context switch to a new task. Figure 7 shows a histogram plot of the context switch
time measured. Our platform shows three peaks, representing local migration and
two of the possible migration paths previously discussed. Clearly, the cache misses
associated with context switching to a migrated task are quite costly.

3.5.4. System Call Overheads. There are two system calls which are highly important
to ChronOS: begin rt_seg() and end rt_seg(). Each of these calls must be made
by each job, and therefore, the sum of their execution times represents the min-
imum possible segment length. Figure 8 shows the overheads of various system
calls, including begin rt_seg() and end rt_seg(). Traditional system calls gettid ()
and clock getres() are relatively short, and therefore provide reasonable base-
line estimates of the overhead of a system call. Both ChronOS system calls are
quite long, but not inordinately so when compared to sched setaffinity() and
sched_setscheduler (), both of which also potentially invoke scheduling changes.
In fact, both ChronOS system calls perform the same underlying operations as
sched_setscheduler (), and therefore their high cost is completely reasonable.
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4. CONCLUSIONS

We have presented an experimental evaluation of the scalability of thirteen multicore
real-time scheduling algorithms on a 48-core platform. While this is not the first study
to address scalability, our work is the first to schedule the experimental workload gen-
erated and measure schedulability and tardiness, and the first to use a x86 platform.

We make several conclusions. First, G-NP-EDF can be implemented in a highly scal-
able manner, and provides extremely good performance in the soft real-time case. Sec-
ond, when it is possible to produce a feasible schedule using partitioning or clustering,
P-EDF and C-EDF generally outperform other algorithms in the hard real-time case.
We find that the scaling bottleneck for G-EDF and G-RMS is the high execution cost
of the scheduler and the cost of inter-processor synchronization necessary to distribute
the global schedule. The execution cost of the schedulers is largely due to the cost of
accessing task descriptors on remote processors. Likely because of our use of an x86
platform and in contrast to [Brandenburg et al. 2008], we find that even a simple linked
list implementation of the global queue does not become a bottleneck on 48 cores.

We intend to pursue three directions for future work. First, although we did not
find implementing the global queue as a linked list to be a bottleneck, if the core
count is further increased it will likely become one. To this end, for future studies
we intend to replace this with a more advanced data structure. Second, both G-EDF
and G-RMS suffer from the high cost and frequency of inter-processor synchronization
during global scheduling events. While the use of an MCS lock significantly improved
performance over the use of a Linux spinlock, we believe that there are still a num-
ber of improvements to be made through the use of some form of read-write lock and
careful consideration of when synchronization can be avoided altogether. Third, our
results directly contradict the previous study on this subject, which we believe is due
to the differences between the SPARC and x86 architectures. We would like to repeat
this study on a RISC platform to see which of our conclusions are specific to the x86
architecture, and which may be generalized.

The development of ChronOS Linux is coordinated via git repositories
at http://git.chronoslinux.org, and the latest releases are published at
http://chronoslinux.org, along with installation and usage instructions.
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Fig. 9. Hard real-time schedulability results for (a) heavy uniform, (b) heavy bimodal, (c) medium uniform,
(d) medium bimodal, (e) light uniform, and (f) light bimodal per-task weight distributions.
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Fig. 10. Mean maximum tardiness results for (a) heavy uniform, (b) heavy bimodal, (c) medium uniform,
(d) medium bimodal, (e) light uniform, and (f) light bimodal per-task weight distributions.
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Hard real-time schedulability results for TUF schedulers for (a) heavy uniform, (b) heavy bimodal,

(¢) medium uniform, (d) medium bimodal, (e) light uniform, and (f) light bimodal per-task weight distribu-

tions.
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